GENERAL |
|
|
|
|
Casimir Force of Piston Systems with Arbitrary Cross Sections under Different Boundary Conditions |
XIONG Ai-Min, CHEN Xiao-Song |
Institute of Theoretical Physics, Chinese Academy of Sciences, PO Box 2735, Beijing 100190 |
|
Cite this article: |
XIONG Ai-Min, CHEN Xiao-Song 2009 Chin. Phys. Lett. 26 060302 |
|
|
Abstract We study the Casimir force between two pistons under different boundary conditions inside an infinite cylinder with arbitrary cross section. It is found that the attractive or repulsive character of the Casimir force for a scalar field is determined only by the boundary condition along the longitudinal direction and is independent of the cross section, transverse boundary conditions and the mass of the field. Under symmetric Dirichlet-Dirichlet, Neumann-Neumann and periodic longitudinal boundary conditions the Casimir force is always attractive, but is repulsive under non-symmetric Dirichlet-Neumann and anti-periodic longitudinal boundary conditions. The Casimir force of the electromagnetic field in an ideal conductive piston is also investigated. This force is always attractive regardless of the shape of the cross section and the transverse boundary conditions.
|
Keywords:
03.70.+k
11.10.-z
12.20.-m
|
|
Received: 05 September 2008
Published: 01 June 2009
|
|
|
|
|
|
[1] Casimir H B G 1948 Proc. K. Ned. Akad. Wet. 51793 [2] Lamoreaux S K 1997 Phys. Rev. Lett. 78 5 [3] Mohideen U and Roy A 1998 Phys. Rev. Lett. 814549 [4] Roy A, Lin C Y and Mohideen U 1999 Phys. Rev. D 60 111101 [5] Bressi G, Carugno G, Onofrio R and Ruoso G 2002 Phys.Rev. Lett. 88 041804 [6] Bordag M, Mohideen U and Mostepanenko V M 2001 Phys.Rep. 353 1 [7] Boyer T H 1968 Phys. Rev. 174 1764 [8] Boyer T H 1974 Phys. Rev. A 9 2078 [9] Ambjorn J and Wolfram S 1983 Ann. Phys. 147 1 [10] Maclay G J 2000 Phys. Rev. A 61 052110 [11] Caruso F, Neto N P, Svaiter B F and Svaiter N F 1991 Phys. Rev. D 43 1300 [12] Hacyan S, J\'{auregui R and Villarreal C 1993 Phys.Rev. A 47 4204 [13] Li X Z, Cheng H B, Li J M and Zhai X H 1997 Phys.Rev. D 56 2155 [14] Caruso F, De Paola R and Svaiter N F 1999 Int. J.Mod. Phys. A 14 2077 [15] Cavalcanti R M 2004 Phys. Rev. D 69 065015 [16] Hertzberg M P, Jaffe R L, Kardar M and Scardicchio A 2005 Phys. Rev. Lett. 95 250402 [17] Hertzberg M P, Jaffe R L, Kardar M and Scardicchio A 2007 Phys. Rev. D 76 045016 [18] Marachevsky V N 2007 Phys. Rev. D 75 085019 [19] Edery A and Marachevsky V N 2008 Phys. Rev. D 78 025021 [20] Edery A 2007 Phys. Rev. D 75 105012 [21] Zhai X H and Li X Z 2007 Phys. Rev. D 76047704 [22] Lim S C and Teo L P 2008 arXiv:0807.3613v1 [hep-th] [23] Zhai X H, Zhang Y Y and Li X Z 2009 Mod. Phys.Lett. A 24 393 [24] Jaffe R L and Scardicchio A 2004 Phys. Rev. Lett. 92 070402 [25] Scardicchio A and Jaffe R L 2005 Nucl. Phys. B 704 552 [26] Xiong A M and Chen X S 2008 Commun. Theor. Phys. 50 1317 [27] Xiong A M and Chen X S 2009 (in preparation) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|