Chin. Phys. Lett.  2009, Vol. 26 Issue (6): 060202    DOI: 10.1088/0256-307X/26/6/060202
GENERAL |
A Variational Iteration Solving Method for a Class of Generalized Boussinesq Equations
MO Jia-Qi
1Department of Mathematics, Anhui Normal University, Wuhu 2410002Division of Computational Science, E-Institutes of Shanghai Universities, Shanghai Jiao Tong University, Shanghai 200240
Cite this article:   
MO Jia-Qi 2009 Chin. Phys. Lett. 26 060202
Download: PDF(344KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study a generalized nonlinear Boussinesq equation by introducing a proper functional and constructing the variational iteration sequence with suitable initial approximation. The approximate solution is obtained for the solitary wave of the Boussinesq equation with the variational iteration method.
Keywords: 02.30.Jr      02.30.Mv      02.60.Lj      02.30.Sa     
Received: 02 February 2009      Published: 01 June 2009
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Mv (Approximations and expansions)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  02.30.Sa (Functional analysis)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/6/060202       OR      https://cpl.iphy.ac.cn/Y2009/V26/I6/060202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MO Jia-Qi
[1] Ma S H, Qiang J Y and Fang J P 2007 Acta Phys. Sin. 56 620 (in Chinese)
[2] Ma S H, Qiang J Y and Fang J P 2007 Commun. Theor.Phys. 48 662
[3] Loutsenko I 2006 Comm. Math. Phys. 268 465
[4] Gedalin M 1998 Phys. Plasmas 5 127
[5] Parkes E J 2008 Chaos Solitons Fractals 38 154
[6] Li X Z and Wang M L 2007 Phys. Lett. A 361 115
[7] Wang M L 1995 Phys. Lett. A 199 169
[8] Sirendaoreji J S 2003 Phys. Lett. A 309 387
[9] McPhaden M J and Zhang D 2002 Nature 415 603
[10] Gu D F and Philander S G H 1997 Science 275805
[11] Pan L X, Zuo W M and Yan J R 2005 Acta Phys. Sin. 54 1 (Chinese)
[12] He J H 2006 Int. J. Mod. Phys. B 20 1141
[13] He J H 2002 Approximate Analytical Methods inEngineering and Sciences (Shengzhou: Henan Science and Technology)(in Chinese)
[14] Ni W M and Wei J C 2006 J. Differ. Equations 221 158
[15] Bartier J P 2006 Asymptotic Anal. 46 325
[16] Llibre J and da Silva P R 2007 J. Dyn. Differ.Equations 19 309
[17] Guarguaglini F R and Natalini R 2007 Commun. PartialDiffer. Equations 32 163
[18] Mo J Q 1989 Sci. Chin. A 32 1306
[19] Mo J Q and Lin W T 2008 J. Sys. Sci. Complexity 20 119
[20] Mo J Q and Wang H 2007 Acta Ecologica Sin. 274366
[21] Mo J Q, Zhu J, Wang H 2003 Prog. Nat. Sci. 13768
[22] Mo J Q, Zhang W J and He M 2007 Acta Phys. Sin. 56 1843 (in Chinese)
[23] Mo J Q, Zhang W J and Chen X F 2007 Acta Phys.Sin. 56 6169 (in Chinese)
[24] Mo J Q 2009 Chin. Phys. Lett. 26 9
[25] Mo J Q, Zhang W J, He M 2006 Acta Phys. Sin. 55 3233 (in Chinese)
[26] Mo J Q, Lin W T, Wang H 2008 Chin. Geograph. Sci. 18 193
[27] Mo J Q, Lin W T, Wang H 2007 Prog. Nat. Sci. 17 230
[28] Mo J Q, Lin W T, Lin Y H 2007 Acta Phys. Sin. 56 3127 (in Chinese)
[29] Mo J Q, Lin W T, Wang H 2007 Chin. Phys. 16951
[30] Mo J Q, Lin W T 2008 Chin. Phys. 17 370
[31] Zheng X, Zhang H Q, 2006 Acta Phys. Sin. 541476
[32] Ma S H, Fang J P, Zheng C L 2008 Chin. Phys. 17 2767
[33] Haraux A 1981 Nonlinear Evolution Equations: GlobalBehavior of Solutions (New York: Springer)
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 060202
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 060202
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 060202
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 060202
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 060202
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 060202
[7] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 060202
[8] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 060202
[9] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 060202
[10] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 060202
[11] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 060202
[12] YAO Jing-Su**, CHEN Li-Hua, WEN Zhao-Hui, MO Jia-Qi, **. Solving Method for the Single-Kink Soliton Solution to a Disturbed Coupled Burgers System[J]. Chin. Phys. Lett., 2011, 28(8): 060202
[13] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 060202
[14] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 060202
[15] WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation[J]. Chin. Phys. Lett., 2011, 28(6): 060202
Viewed
Full text


Abstract