GENERAL |
|
|
|
|
A Variational Iteration Solving Method for a Class of Generalized Boussinesq Equations |
MO Jia-Qi |
1Department of Mathematics, Anhui Normal University, Wuhu 2410002Division of Computational Science, E-Institutes of Shanghai Universities, Shanghai Jiao Tong University, Shanghai 200240 |
|
Cite this article: |
MO Jia-Qi 2009 Chin. Phys. Lett. 26 060202 |
|
|
Abstract We study a generalized nonlinear Boussinesq equation by introducing a proper functional and constructing the variational iteration sequence with suitable initial approximation. The approximate solution is obtained for the solitary wave of the Boussinesq equation with the variational iteration method.
|
Keywords:
02.30.Jr
02.30.Mv
02.60.Lj
02.30.Sa
|
|
Received: 02 February 2009
Published: 01 June 2009
|
|
PACS: |
02.30.Jr
|
(Partial differential equations)
|
|
02.30.Mv
|
(Approximations and expansions)
|
|
02.60.Lj
|
(Ordinary and partial differential equations; boundary value problems)
|
|
02.30.Sa
|
(Functional analysis)
|
|
|
|
|
[1] Ma S H, Qiang J Y and Fang J P 2007 Acta Phys. Sin. 56 620 (in Chinese) [2] Ma S H, Qiang J Y and Fang J P 2007 Commun. Theor.Phys. 48 662 [3] Loutsenko I 2006 Comm. Math. Phys. 268 465 [4] Gedalin M 1998 Phys. Plasmas 5 127 [5] Parkes E J 2008 Chaos Solitons Fractals 38 154 [6] Li X Z and Wang M L 2007 Phys. Lett. A 361 115 [7] Wang M L 1995 Phys. Lett. A 199 169 [8] Sirendaoreji J S 2003 Phys. Lett. A 309 387 [9] McPhaden M J and Zhang D 2002 Nature 415 603 [10] Gu D F and Philander S G H 1997 Science 275805 [11] Pan L X, Zuo W M and Yan J R 2005 Acta Phys. Sin. 54 1 (Chinese) [12] He J H 2006 Int. J. Mod. Phys. B 20 1141 [13] He J H 2002 Approximate Analytical Methods inEngineering and Sciences (Shengzhou: Henan Science and Technology)(in Chinese) [14] Ni W M and Wei J C 2006 J. Differ. Equations 221 158 [15] Bartier J P 2006 Asymptotic Anal. 46 325 [16] Llibre J and da Silva P R 2007 J. Dyn. Differ.Equations 19 309 [17] Guarguaglini F R and Natalini R 2007 Commun. PartialDiffer. Equations 32 163 [18] Mo J Q 1989 Sci. Chin. A 32 1306 [19] Mo J Q and Lin W T 2008 J. Sys. Sci. Complexity 20 119 [20] Mo J Q and Wang H 2007 Acta Ecologica Sin. 274366 [21] Mo J Q, Zhu J, Wang H 2003 Prog. Nat. Sci. 13768 [22] Mo J Q, Zhang W J and He M 2007 Acta Phys. Sin. 56 1843 (in Chinese) [23] Mo J Q, Zhang W J and Chen X F 2007 Acta Phys.Sin. 56 6169 (in Chinese) [24] Mo J Q 2009 Chin. Phys. Lett. 26 9 [25] Mo J Q, Zhang W J, He M 2006 Acta Phys. Sin. 55 3233 (in Chinese) [26] Mo J Q, Lin W T, Wang H 2008 Chin. Geograph. Sci. 18 193 [27] Mo J Q, Lin W T, Wang H 2007 Prog. Nat. Sci. 17 230 [28] Mo J Q, Lin W T, Lin Y H 2007 Acta Phys. Sin. 56 3127 (in Chinese) [29] Mo J Q, Lin W T, Wang H 2007 Chin. Phys. 16951 [30] Mo J Q, Lin W T 2008 Chin. Phys. 17 370 [31] Zheng X, Zhang H Q, 2006 Acta Phys. Sin. 541476 [32] Ma S H, Fang J P, Zheng C L 2008 Chin. Phys. 17 2767 [33] Haraux A 1981 Nonlinear Evolution Equations: GlobalBehavior of Solutions (New York: Springer) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|