Chin. Phys. Lett.  2009, Vol. 26 Issue (4): 049701    DOI: 10.1088/0256-307X/26/4/049701
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Slim Discs with Varying Accretion Rates
JIAO Cheng-Liang, LU Ju-Fu
Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005
Cite this article:   
JIAO Cheng-Liang, LU Ju-Fu 2009 Chin. Phys. Lett. 26 049701
Download: PDF(213KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract It was revealed in our previous studies that there exists a maximal possible accretion rate for slim discs with constant accretion rates because the correctly calculated vertical gravitational force can only gather some limited amount of accreted matter. Here we show that when the accretion rate is not constant and instead decreases with decreasing radius because of outflows, such that the amount of accreted matter is adjusted to be within the allowed limit, global slim disc solutions can be constructed even for the case that accretion rates at large radii apparently exceed the maximal possible value. This result further demonstrates that outflows seem to be unavoidable for accretion flows with large accretion rates at large radii.
Keywords: 97.10.Gz      97.60.Lf      98.38.Fs      95.30.Lz     
Received: 03 February 2009      Published: 25 March 2009
PACS:  97.10.Gz (Accretion and accretion disks)  
  97.60.Lf (Black holes)  
  98.38.Fs (Jets, outflows, and bipolar flows)  
  95.30.Lz (Hydrodynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/4/049701       OR      https://cpl.iphy.ac.cn/Y2009/V26/I4/049701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIAO Cheng-Liang
LU Ju-Fu
[1] Abramowicz M A, Czerny B, Lasota J P and Szuszkiewicz E1988 Astrophys. J. 332 646
[2] Chen L H and Wang J M 2004 Astrophys. J. 614101
[3] Paczy\'{nski B and Wiita P J 1980 Astron.Astrophys. 88 23
[4] H\={oshi R 1977 Prog. Theor. Phys. 58 1191
[5] Gu W M and Lu J F 2007 Astrophys. J. 660 541
[6] Shakura N I and Sunyaev R A 1973 Astron. Astrophys. 24 337
[7] Jiao C L, Xue L, Gu W M, and Lu J F 2009 Astrophys.J. in press
[8] Ohsuga K, Mori M, Nakamoto T and Mineshige S 2005 Astrophys. J. 628 368
[9] Ohsuga K and Mineshige S 2007 Astrophys. J. 670 1283
[10] Kato S, Fukue J and Mineshige S 1998 Black-HoleAccretion Disks (Kyoto: Kyoto University Press)
Related articles from Frontiers Journals
[1] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 049701
[2] LIU Yan, JING Ji-Liang**. Propagation and Evolution of a Scalar Field in Einstein–Power–Maxwell Spacetime[J]. Chin. Phys. Lett., 2012, 29(1): 049701
[3] Faiz-ur-Rahman, Salahuddin, M. Akbar** . Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction[J]. Chin. Phys. Lett., 2011, 28(7): 049701
[4] HE Liang, HUANG Chang-Yin, WANG Ding-Xiong** . A Constraint of Black Hole Mass and the Inner Edge Radius of Relativistic Accretion Disc[J]. Chin. Phys. Lett., 2011, 28(3): 049701
[5] CAO Guang-Tao**, WANG Yong-Jiu . Interference Phase of Mass Neutrino in Schwarzschild de Sitter Field[J]. Chin. Phys. Lett., 2011, 28(2): 049701
[6] LIU Tong**, XUE Li . Gravitational Instability in Neutrino Dominated Accretion Disks[J]. Chin. Phys. Lett., 2011, 28(12): 049701
[7] GUO Guang-Hai**, DING Xia . Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes[J]. Chin. Phys. Lett., 2011, 28(10): 049701
[8] PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. Chin. Phys. Lett., 2010, 27(6): 049701
[9] ZHAO Fan, HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole[J]. Chin. Phys. Lett., 2010, 27(2): 049701
[10] WEI Ying-Chun, A. Taani**, PAN Yuan-Yue, WANG Jing, CAI Yan, LIU Gao-Chao, LUO A-Li, ZHANG Hong-Bo, ZHAO Yong-Heng . Neutron Star Motion in the Disk Galaxy[J]. Chin. Phys. Lett., 2010, 27(11): 049701
[11] M. Akbar, Asghar Qadir. Gauss-Bonnet and Lovelock Gravities and the Generalized Second Law of Thermodynamics[J]. Chin. Phys. Lett., 2009, 26(6): 049701
[12] ZHANG Yu, , WANG Chun-Yan, GUI Yuan-Xing, WANG Fu-Jun, YU Fei. Dirac Quasinormal Modes of a Schwarzschild Black Hole surrounded by Free Static Spherically Symmetric Quintessence[J]. Chin. Phys. Lett., 2009, 26(3): 049701
[13] YANG Jian, ZHAO Zheng, TIAN Gui-Hua, LIU Wen-Biao. Tortoise Coordinates and Hawking Radiation in a Dynamical Spherically Symmetric Spacetime[J]. Chin. Phys. Lett., 2009, 26(12): 049701
[14] LIN Kai, YANG Shu-Zheng. Fermions Tunneling from Non-Stationary Dilaton-Maxwell Black Hole via General Tortoise Coordinate Transformation[J]. Chin. Phys. Lett., 2009, 26(10): 049701
[15] LIN Kai, YANG Shu-Zheng. Fermion Tunnelling of a New Form Finslerian Black Hole[J]. Chin. Phys. Lett., 2009, 26(1): 049701
Viewed
Full text


Abstract