GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
|
|
|
|
Contribution from the Earth's Bow Shock to Region 1 Current under Low Alfvén Mach Numbers |
PENG Zhong, HU You-Qiu |
CAS Key Laboratory for Basic Plasma Physics, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 |
|
Cite this article: |
PENG Zhong, HU You-Qiu 2009 Chin. Phys. Lett. 26 049401 |
|
|
Abstract Using global MHD simulations of the solar wind-magnetosphere-ionosphere system, we investigate the dependence of the contribution from the Earth's bow shock (I1bs) to ionospheric region 1 field aligned current (FAC) (I1). It is found that I1bs increases with increasing southward interplanetary magnetic field (IMF) strength Bs, if the Alfvén Mach number MA of the solar wind exceeds 2, a similar result as obtained by previous authors. However, if MA becomes close to or falls below 2, I1bs will decrease with Bs in both magnitude and percentage (i.e., I1bs}/I1) because of the resultant reduction of the bow shock strength. Both the surface current density Jbs at the nose of the bow shock and the total bow shock current Ibs share nearly the same relationship with MA, and vary non-monotonically with MA or Bs. The maximum point is found to be located at MA = 2.7. Three conclusions are then made as follows: (1) The surface current density at the nose, which is much easier to be evaluated, may be used to largely describe the behaviour of the bow shock instead of the total bow shock current. (2) The peak of the total bow shock current is reached at about MA = 2.7 when only Bs is adjusted. (3) The non-monotonic variation of the bow shock current with MA causes a similar variation of its contribution to region 1 FAC. The turning point for such contribution is found to be nearly MA= 2. The implication of these conclusions to the saturation of the ionospheric transpolar potential is briefly discussed
|
Keywords:
94.30.-d
94.20.Yx
94.90.+m
|
|
Received: 09 December 2008
Published: 25 March 2009
|
|
PACS: |
94.30.-d
|
(Physics of the magnetosphere)
|
|
94.20.Yx
|
|
|
94.90.+m
|
(Other topics in space plasma physics, physics of the ionosphere and magnetosphere)
|
|
|
|
|
[1] Siscoe G L and Siebert K D 2006 J. Atmospheric andSolar--Terrestrial Phys. 106 911 [2] Liang J and Liu W W 2007 J. Geophys. Res. 112A09208 doi:10.1029/2007JA012303 [3] Ogino T 1986 J. Geophys. Res. 91 6791 [4] Fedder J A and Lyon J G 1987 Geophys. Res. Lett. 14 880 [5] Raeder J, Walker R J and Ashour-Adballa M 1995 Geophys. Res. Lett. 22 349 [6] Tanaka T 1995 J. Geophys. Res. 100 12057 [7] Janhulen P and Koskinen H E J 1997 Geophys. Res.Lett. 24 1419 [8] Siscoe G L, Crooker N U, Erickson G M et al 2000 Global Geometry of Magnetospheric Currents Inferred from MHDSimulations, in Magnetospheric Current Systems ed Ohtani S et al(Washington, DC: American Geophysical Union) p 41 [9] Fedder J A, Slinker S P, Lyon J G et al 1997 Geophys.Res. Lett. 24 2491 [10] Siebert K D and Siscoe G L 2002 J. Geophys. Res. 107 1095 doi:10.1029/2001JA000237 [11] Guo X C, Wang C, Hu Y Q and Kan J R 2008 Geophys.Res. Lett. 35 L03108 doi:10.1029/2007GL032713 [12] Lopez R E, Wiltberger M, Hernandez S and Lyon J G 2004 Geophys. Res. Lett. 31 L08804 doi:10.1029/2003GL018780 [13] Kataoka R, Fairfield D H, Sibeck D G et al. 2005 Geophys. Res. Lett. 32 L21108 doi:10.1029/2005GL024495 [14] Ridley A J 2005 Annales Geophys. 23 3533 [15] Ridley A J 2007 Annales Geophys. 25 533 [16] Hu Y Q, Guo X C, Li G Q et al 2005 Chin. Phys.Lett. 22 2723 [17] Hu Y Q, Guo X C and Wang C 2007 J. Geophys. Res. 112 A07215 doi:10.1029/2006JA012145 [18] Colella P and Woodward P R 1984 J. Comput. Phys. 54 174 [19] Roberge W and Draine B 1990 Astrophysical J. 350 700 [20] Siscoe G L, Erickson G M, Sonnerup B U \"O et al 2002 J. Geophys. Res. 107 1075 doi:10.1029/2001JA000109 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|