Chin. Phys. Lett.  2009, Vol. 26 Issue (4): 048902    DOI: 10.1088/0256-307X/26/4/048902
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prisoner's Dilemma Game on Two Types of Positively Correlated Networks
LIU Yong-Kui1, LI Zhi1, CHEN Xiao-Jie2,3, WANG Long1,2
1Center for Complex Systems, Department of Automatic Control Engineering, Xidian University, Xi'an 7100712State Key Laboratory for Turbulence and Complex Systems, Center for Systems and Control, College of Engineering, Peking University, Beijing 1008713Department of Zoology, University of British Columbia, Vancouver BC V6T 1Z4, Canada
Cite this article:   
LIU Yong-Kui, LI Zhi, CHEN Xiao-Jie et al  2009 Chin. Phys. Lett. 26 048902
Download: PDF(378KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the effects of degree correlations on the evolution of cooperation in the prisoner's dilemma game with individuals located on two types of positively correlated networks. It is shown that the positive degree correlation can either promote or inhibit the emergence of cooperation depending on network configurations. Furthermore, we investigate the probability to cooperate as a function of connectivity degree, and find that high-degree individuals generally have a higher tendency to cooperate. Finally, it is found that small-degree individuals usually change their strategy
more frequently, and such change is shown to be unfavourable to cooperation for both kinds of networks.
Keywords: 89.75.Hc      02.50.Le      87.23.Ge     
Received: 01 September 2008      Published: 25 March 2009
PACS:  89.75.Hc (Networks and genealogical trees)  
  02.50.Le (Decision theory and game theory)  
  87.23.Ge (Dynamics of social systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/4/048902       OR      https://cpl.iphy.ac.cn/Y2009/V26/I4/048902
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Yong-Kui
LI Zhi
CHEN Xiao-Jie
WANG Long
[1] Smith J M 1982 Evolution and the Theory of Games(Cambridge: Cambridge University)
[2] Axelrod R and Hamilton W D 1981 Science 2111390
[3] Szab\'{o G and F\'{ath G 2007 Phys. Rep. 44697
[4] Hamilton W D 1964 J. Theoret. Biol. 7 17
[5] Traulsen A and Nowak M A 2006 Proc. Natl, Acad.Sci. U.S.A. 103 10952
[6] Axelrod R 1984 The Evolution of Cooperation (NewYork: Basic Books)
[7] Nowak M A and Sigmund K 2005 Nature 437 1291
[8] Nowak M A 2006 Nature 314 1560
[9] Nowak M A and May R M 1992 Nature 359 826
[10] Szab\'{o G and T\"{oke C 1998 Phys. Rev. E 58 69
[11] Szab\'{o G, Vukov J and Szolnoki A 2005 Phys. Rev.E 72 047107
[12] Tomassini M, Luthi L and Giacobini M 2006 Phys.Rev. E 73 016132
[13] Zhang M F et al 2008 Chin. Phys. Lett. 251494
[14] Yang H X et al 2008 Chin. Phys. 17 2759
[15] Barabasi A L and Albert R 1999 Science 286509
[16] Santos F C et al 2005 Phys. Rev. Lett. 95098104
[17] Santos F C and Pacheco J M 2006 J. Evol. Biol. 19 726
[18] Santos F C Pacheco J M and Lenaerts T 2006 Proc.Natl. Acad. Sci. USA 103 3490
[19] Yang H X et al 2008 Chin. Phys. Lett. 25 3504
[20] Rong Z H et al 2007 Phys. Rev. E 76 027101
[21] Pusch A et al 2008 Phys. Rev. E 77 036120
[22] Newman M E J 2002 Phys. Rev. Lett. 89 208701
[23] Chavez M et al 2006 Phys. Rev. E 74 066107
[24] Callaway D S et al 2001 arXiv: cond-mat/0104546v2
[25] Molloy M and Reed B Random Structures andAlgorithms 1995 6 161
[26] Molloy M et al 1998 Probability and Computing 7 295
[27] Chen Y S Hai L and Wu C X 2007 Physica A 385379
[28] Assenza S et al 2008 Phys. Rev. E 78 017101
Related articles from Frontiers Journals
[1] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 048902
[2] ZHANG Feng-Li,ZHANG Mei**. Emergence and Decline of Scientific Paradigms in a Two-Group System[J]. Chin. Phys. Lett., 2012, 29(4): 048902
[3] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 048902
[4] LI Ping, ZHANG Jie, XU Xiao-Ke, SMALL Michael. Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks[J]. Chin. Phys. Lett., 2012, 29(4): 048902
[5] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 048902
[6] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 048902
[7] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 048902
[8] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 048902
[9] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 048902
[10] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 048902
[11] Salman Khan**, M. Khalid Khan . Quantum Stackelberg Duopoly in a Noninertial Frame[J]. Chin. Phys. Lett., 2011, 28(7): 048902
[12] DENG Li-Li, TANG Wan-Sheng**, ZHANG Jian-Xiong . Coevolution of Structure and Strategy Promoting Fairness in the Ultimatum Game[J]. Chin. Phys. Lett., 2011, 28(7): 048902
[13] CHENG Hong-Yan, YANG Jun-Zhong** . Organization of the Strategy Pattern in Evolutionary Prisoner's Dilemma Game on Scale-Free Networks[J]. Chin. Phys. Lett., 2011, 28(6): 048902
[14] SUN Wei-Gang, , CAO Jian-Ting, WANG Ru-Bin** . Approach of Complex Networks for the Determination of Brain Death[J]. Chin. Phys. Lett., 2011, 28(6): 048902
[15] LI Jun, WU Jun**, LI Yong, DENG Hong-Zhong, TAN Yue-Jin** . Optimal Attack Strategy in Random Scale-Free Networks Based on Incomplete Information[J]. Chin. Phys. Lett., 2011, 28(6): 048902
Viewed
Full text


Abstract