Chin. Phys. Lett.  2009, Vol. 26 Issue (4): 048701    DOI: 10.1088/0256-307X/26/4/048701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Lattice Boltzmann Simulations of Particle-Particle Interaction in Steady Poiseuille Flow
YI Hou-Hui1, FAN Li-Juan1, YANG Xiao-Feng2, LI Hua-Bing3
1Department of Physics and Electronics Science, Binzhou University, Shandong 2566002Department of Computer Engineering, Yiwu Industrial and Commercial College, Zhejiang 3220003Department of Information Material Science and Engineering, Guilin University of Electronic Technology, Guangxi 541004
Cite this article:   
YI Hou-Hui, FAN Li-Juan, YANG Xiao-Feng et al  2009 Chin. Phys. Lett. 26 048701
Download: PDF(411KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The moving behaviour of two- and three-particles in a pressure-driven flow is studied by the lattice Boltzmann simulation in two dimensions. The time-dependent values, including particles' radial positions, translational velocities, angular velocities, and the x-directional distance between the particles are analysed extensively. The effect of flow Reynolds number on particle motion is also investigated numerically. The simulation results show that the leading particle equilibrium position is closer to the channel centre while the trailing particle equilibrium position is closer to the channel wall. If Reynolds number Re is less than 85.30, the larger flow Reynolds number results in the smaller x-directional equilibrium distance, otherwise the x-directional distance increases almost linearly with the increase of time and the particles separate finally. The simulation results are helpful to understand the particle-particle
interaction in suspensions with swarms of particles.
Keywords: 87.19.-j      87.19.Uv      47.11.+j     
Received: 03 December 2008      Published: 25 March 2009
PACS:  87.19.-j (Properties of higher organisms)  
  87.19.Uv  
  47.11.+j  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/4/048701       OR      https://cpl.iphy.ac.cn/Y2009/V26/I4/048701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YI Hou-Hui
FAN Li-Juan
YANG Xiao-Feng
LI Hua-Bing
[1] Fung Y C 1997 Biomechanics Circulation (Berlin:Springer)
[2] Stround J S et al 2002 J. Biomech. Eng. 124 9
[3] Jayaweera K O L F et al 1964 J. Fluid Mech. 20 121
[4] Jayaweera K O L F et al 1965 J. Fluid Mech. 22 709
[5] Joseph D D, Liu Y J, Poletto M and Feng J 1994 J.Non-Newtonian Fluid Mechanics 54 45
[6] Feng J et al 1994 J. Fluid Mech. 261 95
[7] Goldman A J et al 1996 Chem. Engng. Sci. 211151
[8] McNamara G R et al 1988 Phys. Rev. Lett. 612332
[9] Qian Y H et al 1992 Europhys. Lett. 17 479
[10] Chen S et al 1991 Phys. Rev. Lett. 67 3776
[11] Chen H et al 1992 Phys. Rev. A 45 5339
[12] Chen H D et al 2003 Science 301 633
[13] Succi S 2001 The Lattice Boltzmann Equation forFluid Dynamics and Beyond (Oxford: Clarendon)
[14] Ladd A J C 1994 J. Fluid Mech. 271 285
[15] Wan R Z et al 2003 Phys. Rev. E 68 011401
[16] Zhang C Y et al 2004 Chin. Phys. Lett. 211108
[17] Zhang C Y et al 2004 Acta Phys. Sin. 541982 (in Chinese)
[18] Zhang C Y et al 2005 Chin. Phys. Lett. 22896
[19] Li H B et al 2004 Phys. Rev. E 70 026701
[20] Fang H P and Chen S Y 2004 Chin. Phys. 13 47
[21] Shan X and Chen H D 1993 Phys. Rev. E 47 1815
[22] Guo Z L and Zhao T S 2003 Phys. Rev. E 68035302
[23] Guo Z L and Zhao T S 2005 Phys. Rev. E 71026701
[24] Swift M R et al 1995 Phys. Rev. Lett. 75830
[25] Xu A G et al 2004 Physica A 331 10
[26] Xu Y S et al 2003 Chin. Phys. 12 621
[27] Xu Y S et al 2003 Mod. Phys. Lett. B 191351
[28] Xu Y S 2003 Acta Phys. Sin. 52 626 (inChinese)
[29] Xu Y S et al 2004 Acta Phys. Sin. 53 773(in Chinese)
[30] Wu B Z et al 2005 Chin. Phys. 14 2046
[31] Fang H P et al 1998 Phys. Rev. E 57 R25
[32] Fang H P et al 2002 Phys. Rev. E 65 051905
[33] Li H B et al 2004 Phys. Rev. E 69 031919
[34] Yi H H et al 2005 Chin. Phys. Lett. 22 3210
[35] Kang X Y et al 2005 Chin. Phys. Lett. 222873
[36] Lu X Y et al 2006 Chin. Phys. Lett. 23 738
[37] Li H B et al 2008 Europhys. Lett. 81 54002
[38] Yi H H et al 2008 Chin. Phys. Lett. 25 3496
[39] Migliorini C et al 2002 Biophys. J. 83 1834
[40] Sun C H et al 2003 Biophys. J. 85 208
[41] Inamuro T et al 2000 Int. J. Multiphase Flow 26 1981
[42] Allen M P and Tildesley D J 1987 Computer Simulationof Liquid (Oxford: Clarendon)
[43] Segr\'e G and Silberberg A 1961 Nature 189209
[44] Segr\'e G and Silberberg A 1962 J. Fluid Mech. 14 115
[45] Segr\'e G et al 1965 Proc. 4th. Int. Gong. Rheol. 4 103
[46] Zhu M Y 2000 PhD Thesis (University ofPennsylvania)
Related articles from Frontiers Journals
[1] SHI Lei**,XIONG Wei,GAO Shu-Sheng. The Effect of Gas Leaks on Underground Gas Storage Performance During Development and Operation[J]. Chin. Phys. Lett., 2012, 29(4): 048701
[2] XU Wan-Hai**, DU Jie, YU Jian-Xing, LI Jing-Cheng . Wake Oscillator Model Proposed for the Stream-Wise Vortex-Induced Vibration of a Circular Cylinder in the Second Excitation Region[J]. Chin. Phys. Lett., 2011, 28(12): 048701
[3] JI Yu-Pin, KANG Xiu-Ying, LIU Da-He. Simulation of Non-Newtonian Blood Flow by Lattice Boltzman Method[J]. Chin. Phys. Lett., 2010, 27(9): 048701
[4] JI Yu-Pin, KANG Xiu-Ying, LIU Da-He. The Blood Flow at Arterial Bifurcations Simulated by the Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2009, 26(7): 048701
[5] DAI Zheng-De, XIAN Da-Quan, LI Dong-Long. Homoclinic Breather-Wave with Convective Effect for the (1+1)-Dimensional Boussinesq Equation[J]. Chin. Phys. Lett., 2009, 26(4): 048701
[6] YI Hou-Hui, FAN Li-Juan, YANG Xiao-Feng, CHEN Yan-Yan. Effect of Rolling Massage on Particle Moving Behaviour in Blood Vessels[J]. Chin. Phys. Lett., 2008, 25(9): 048701
[7] LAI Hui-Lin, MA Chang-Feng,. An Implicit Scheme of Lattice Boltzmann Method for Sine-Gordon Equation[J]. Chin. Phys. Lett., 2008, 25(6): 048701
[8] DAI Zheng-De, LIU Zhen-Jiang, LI Dong-Long. Exact Periodic Solitary-Wave Solution for KdV Equation[J]. Chin. Phys. Lett., 2008, 25(5): 048701
[9] LI Dong-Long, DAI Zheng-De, GUO Yan-Feng. Periodic Homoclinic Wave of (1+1)-Dimensional Long--Short Wave Equation[J]. Chin. Phys. Lett., 2008, 25(12): 048701
[10] QI Mei-Lan, HE Hong-Liang, YAN Shi-Lin. Effect of Temperature on the Void Growth in Pure Aluminium at High Strain-Rate Loading[J]. Chin. Phys. Lett., 2007, 24(8): 048701
[11] LI Hua-Bing, ZHANG Chao-Ying, LU Xiao-Yang, FANG Hai-Ping. An Effective Method on Two-Dimensional Lattice Boltzmann Simulations with Moving Boundaries[J]. Chin. Phys. Lett., 2007, 24(12): 048701
[12] MA Chang-Feng, , SHI Bao-Chang. Lattice Bhatnagar--Gross--Krook Simulations of Hydromagnetic Double-Diffusive Convection in a Rectangular Enclosure with Opposing Temperature and Concentration Gradients[J]. Chin. Phys. Lett., 2006, 23(7): 048701
[13] CHEN Sheng, LIU Zhao-Hui, HE Zhu, ZHANG Chao, TIAN Zhi-Wei, SHI Bao-Chang, ZHENG Chu-Guang. A Novel Lattice Boltzmann Model For Reactive Flows with Fast Chemistry[J]. Chin. Phys. Lett., 2006, 23(3): 048701
[14] LU Xiao-Yang, YI Hou-Hui, CHEN Ji-Yao, FANG Hai-Ping. Lattice BGK Simulations of the Blood Flow in Elastic Vessels[J]. Chin. Phys. Lett., 2006, 23(3): 048701
[15] KANG Xiu-Ying, LIU Da-He, ZHOU Jing, JIN Yong-Juan. Simulating High Reynolds Number Flow by Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2005, 22(6): 048701
Viewed
Full text


Abstract