CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Impurity Activation in MBE-Grown As-Doped HgCdTe by Modulated Photoluminescence Spectra |
YUE Fang-Yu1,2, CHEN Lu3, WU Jun3, HU Zhi-Gao1, LI Ya-Wei1, YANG Ping-Xiong1, CHU Jun-Hao 1,2 |
1Key Laboratory of Polar Materials and Devices (Ministry of Education), East China Normal University, Shanghai 2002412National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 2000833Research Center for Advanced Materials and Devices, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 |
|
Cite this article: |
YUE Fang-Yu, CHEN Lu, WU Jun et al 2009 Chin. Phys. Lett. 26 047804 |
|
|
Abstract Modulated photoluminescence spectra have been performed to investigate the impurity activation in MBE-grown As-doped Hg1-xCdxTe (x≈0.3). The results show that the doped As mainly acting as donors in the as-grown samples can be fully activated as AsTe by two-stage anneals of 285°C/16h + 240°C/48h, of which the ionization energy has been determined to be about 10.5meV, slightly smaller than that of intrinsic VHg (about 14.5meV). However, the higher activation temperature (e.g. 400°C) at the first-stage can produce large numbers of excessive VHg and seriously deteriorate the quality of epilayers. This could give a brief guideline for preparing extrinsic p-type HgCdTe materials or devices.
|
Keywords:
78.66.-w
71.55.Gs
78.55.-m
71.55.-i
|
|
Received: 01 September 2008
Published: 25 March 2009
|
|
PACS: |
78.66.-w
|
(Optical properties of specific thin films)
|
|
71.55.Gs
|
(II-VI semiconductors)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
71.55.-i
|
(Impurity and defect levels)
|
|
|
|
|
[1] Sivananthan S, Wijewarnasuriya P S, Aqariden F, VydyanathH R, Zandian M, Edwall D D and Arias J M 1997 J. Electron.Mater. 26 621 [2] Aqariden F, Shih H D, Kinch M A and Schaake F 2001 Appl. Phys. Lett. 78 3481 [3] Grein C H, Garland J W, Sivananthan S, Wijewarnasuriya PS, Aqariden F and Fuchs M 1999 J. Electron. Mater. 28789 [4] Shi X H, Rujirawat S, Ashokan R, Grein C H andSivananthan S 1998 Appl. Phys. Lett. 73 638 [5] Zandian M, Chen A C, Edwall D D, Pasko J G and Arias J M1997 Appl. Phys. Lett. 71 2815 [6] Lee T S, Garland J, Grein C H, Sumstine M, Jandeska A,Selamet Y and Sivananthan S 2000 J. Electron. Mater. 29869 [7] Shaw D and Capper P 2008 J. Mater Sci: Mater.Electron. 19 67 [8] Tsen G, Sewell R H, Atanacio A J, Prince\,K E, Musca C A,Dell J M and Faraone L 2008 Semicond. Sci. Technol. 23015014 [9] He L, Yang J R, Wang S L, Guo S P, Yu M F, Chen X Q, FangW Z, Qiao Y M, Zhang Y, Ding R J and Xin T L 1997 J. Cryst.Growth 175/176 677 [10] Yue F Y, Shao J, L\"u X, Huang W, Chu J H, Wu J, Lin X Cand He L 2006 Appl. Phys. Lett. 89 021912 [11] Chu J H, Xu S C and Tang D Y 1983 Appl. Phys. Lett. 43 1064 [12] Wu J, Xu F, Wu Y, Chen L, Wang Y, Yu M and He L 2005 SPIE 5640 637 [13] Shao J, Lu W, L\"u X, Yue F Y, Li Z F, Guo S L and Chu JH 2006 Rev. Sci. Instrum. 77 063104 [14] Shao J, L\"u X, Yue F Y, Huang W, Guo S L and Chu J H2006 J. Appl. Phys. 100 053522 [15] Berding M, Sher A, Schilfgaarde M V, Chen A C and Arias J1998 J. Electron. Mater. 27 605 [16] Berding M and Sher A 1999 Appl. Phys. Lett. 74 685 [17] Yue F Y, Chu J H, Wu J, Hu Z G, Li Y W and Yang P X 2008 Appl. Phys. Lett. 92 121916 [18] Yue F Y, Wu J and Chu J H 2008 Appl. Phys. Lett. 93 131909 [19] Yue F Y, Shao J, L\"u X, Huang W and Chu J H 2006 Proc. IEEE 06EX1385 452 [20] Elliott R J 1957 Phys. Rev. 108 1384 [21] Hunter A T, Smith D L and McGill T C 1980 Appl.Phys. Lett. 37 200 [22] Selamet Y, Grein C H, Lee T S and Sivananthan S 2001 J. Vac. Sci. Technol. B 19 1488 [23] Wu J, Xu F F, Wu Y, Chen L, Yu M F and He L 2005 J.Infrared Millim. Waves 24 81 [24] Boieriu P, Chen Y and Nathan V 2002 J. Electron.Mater. 31 694 [25] Hunter A T and McGill T C 1981 J. Appl. Phys. 52 5779 [26] Fuchs F and Koidl P 1991 Semicond. Sci. Technol. 6 C71 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|