CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Site Preference and Alloying Effect of Excess Ni in Ni-Mn-Ga Shape Memory Alloys |
CHEN Jie, LI Yan, SHANG Jia-Xiang, XU Hui-Bin |
1School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 1001912Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beijing University of Aeronautics and Astronautics, Beijing 100191 |
|
Cite this article: |
CHEN Jie, LI Yan, SHANG Jia-Xiang et al 2009 Chin. Phys. Lett. 26 047101 |
|
|
Abstract The formation energies and electronic structures of Ni-rich Ni-Mn-Ga alloys have been investigated by first-principles calculations using the pseudopotential plane wave method based on density functional theory. The results show that the alloying Ni prefers to occupy the Mn site directly in Ni9Mn3Ga4 and to occupy the Mn site and drive the displaced Mn atom to the Ga site in Ni9Mn4Ga3, which is in accordance with the experimental result. According to the lattice constants and the density of states analyses, these site preference behaviours are closely related to the smaller lattice distortion and the lower-energy electronic structure when the excess Ni occupies the Mn site. The effect of Ni alloying on martensitic transformation is discussed and the enhancement of martensitic transformation temperature by Ni alloying is estimated by the calculated formation energy difference between austenite and martensite phases.
|
Keywords:
71.20.Be
71.20.Lp
|
|
Received: 12 December 2008
Published: 25 March 2009
|
|
PACS: |
71.20.Be
|
(Transition metals and alloys)
|
|
71.20.Lp
|
(Intermetallic compounds)
|
|
|
|
|
[1] Ullakko K, Huang J K, Kantner C et al 1996 Appl.Phys. Lett. 69 1966 [2] Sozinov A, Likhachev A A, Lanska N et al 2002 Appl.Phys. Lett. 80 1746 [3] Webster P J, Ziebeck K R A, Town S L et al 1984 Philos. Mag. B 49 295 [4] Pons J, Chernenko V A, Santamarta R et al 2000 ActaMater. 48 3027 [5] Jin X, Marioni M, Bono D et al 2002 J. Appl. Phys. 91 8222 [6] Chernenko V A, L'Vov V, Pons J et al 2003 J. Appl.Phys. 93 2394 [7] Xu H B, Ma Y Q and Jiang C B 2003 Appl. Phys. Lett. 82 3206 [8] Zayak A T, Entel P, Enkovaara J et al 2003 Phys.Rev. B 68 132402 [9] Fritsch G, Kokorin V V and Kempf A 1994 J. Phys.:Condens. Matter 6 L107 [10] Zhao G L and Harmon B N 1993 Phys. Rev. B 482031 [11] Bungaro C, Rabe K M and Corso A D 2003 Phys. Rev.B 68 134104 [12] Ayuela A, Enkovaara J, Ullakko K et al 1999 J.Phys.:Condens. Matter 11 2017 [13] Godlesvsky V V, Rabe K M 2001 Phys. Rev. B 63134407 [14] Ayuela A, Enkovaara J and Nieminen R M 2002 J.Phys.: Condens. Matter 14 5325 [15] MacLaren J M 2002 J. Appl. Phys. 91 7801 [16] Yamaguchi K, Ishida S and Asano S 2003 Mater.Trans. 44 204 [17] Nakata Y and Inoue K 2004 Mater. Trans. 452661 [18] Chakrabarti A, Biswas C, Banik S et al 2005 Phys.Rev. B 72 073103 [19] Chen J, Li Y, Shang J X et al 2006 Appl. Phys.Lett. 89 231921 [20] Segall M D, Lindan P L D, Probert M J et al 2002 J.Phys.: Condens. Matter 14 2717 [21] Perdew J P, Chevary J A, Vosko S H et al 1992 Phys.Rev. B 46 6671 [22] Vanderbilt D 1990 Phys. Rev. B 41 7892 [23] Richard M L, Feuchtwanger J, Allen S M et al 2007 Philos. Mag. 87 3437 [24] Xu H B, Li Y and Jiang C B 2006 Mater. Sci. Eng. A 438--440 1065 [25] Banik S, Chakrabarti A, Kumar U et al 2006 Phys.Rev. B 74 085110 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|