CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Fabrication and Characterization of Si Nanocrystals Synthesized by Electron Beam Evaporation of Si and SiO2 Mixture |
LI Wei-Long, JIA Rui, LIU Ming, CHEN Chen, XIE Chang-Qing, ZHU Chen-Xin, LI Hao-Feng, ZHANG Pei-Wen, YE Tian-Chun |
Key Laboratory of Nanofabrication and Novel Devices Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 |
|
Cite this article: |
LI Wei-Long, JIA Rui, LIU Ming et al 2009 Chin. Phys. Lett. 26 046801 |
|
|
Abstract Silicon nanocrystals synthesized by electron beam (e-beam) evaporation of Si and SiO2 mixture are studied. Rutherford backscattering spectrometry of the as-deposited Si-rich silicon dioxide or oxide (SRO) thin film shows that after evaporation, the Si and SiO2 concentration is well kept, indicating that the e-beam evaporation is suitable for evaporating mixtures of Si and SiO2. The SRO thin films are annealed at different temperatures for two hours to synthesize silicon nanocrystals. For the sample annealed at 1050°C, silicon nanocrystals with different sizes and the mean diameter of 4.5nm are evidently observed by high resolution transmission electron microscopy (HRTEM). Then the Raman scattering and photoluminescence spectra arising from silicon nanocrystals are further confirmed the above results
|
Keywords:
68.37.Lp
73.22.-f
78.66.-w
78.67.-n
|
|
Received: 25 September 2008
Published: 25 March 2009
|
|
PACS: |
68.37.Lp
|
(Transmission electron microscopy (TEM))
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
78.66.-w
|
(Optical properties of specific thin films)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
|
|
|
[1] Tiwari S, Rana F, Hanafi H, Hartstein A, Crabb\'{e E Fand Chan K 1996 Appl. Phys. Lett. 68 1377 [2] Eiji T, Minoru F, Toshihiro N, Yugo M and Shinji H 2007 J. Appl. Phys. 102 023506 [3] Brongersma M L, Polman A, Min K S, Boer E, Tambo T andAtwater H A 1998 Appl. Phys. Lett. 72 2577 [4] Oldham T R, Suhail M, Kuhn P, Prinz E, Kim H S and LaBel KA 2005 IEEE Trans. Nucl. Sci. 52 2366 [5] Barba D, Martin F, Dahmoune C and Rossa G G 2006 Appl. Phys. Lett. 89 034107 [6] Pavesi L, Gaburro Z, Dal Negro L, Bettotti P, Prakash G V,Cazzanelli M and Oton C J 2003 Opt. Lasers Engin. 39 345 [7] Nesbi L A 1985 Appl. Phys. Lett. 46 38 [8] Hayashi S and Yamamoto K 1996 J. Lumin. 70 352 [9] Geohegan D B, Puretzky A A, Duscher G and Pennycook S J1998 Appl. Phys. Lett. 73 438 [10] Zacharias M, Heitmann J, Scholz R, Kahler U, Schmidt Mand Bl\"asing 2002 Appl. Phys. Lett. 80 661 [11] Wan Q, Wang T H, Feng T, Liu X H and Lin C L 2003 Appl. Phys. Lett. 82 3162 [12] http://www.rzg.mpg.de/$\sim$mam/Version5.html http://www.rzg.mpg.de/$\sim$mam/Download.html [13] Brandi S, Latg\'{e A and Oliveira L E 2002 J. Appl.Phys. 92 4209 [14] Islam M N and Kumar S 2001 Appl. Phys. Lett. 78 715 [15] Daldosso N, Das G, Larcheri S, Mariotto G, Dalba G,Pavesi L, lrrera A, Priolo F, lacona D and Rocca F 2007 J.Appl. Phys. 101 113510 [16] Nesheva D, Raptis C, Perakis A, Bineva I, Aneva Z, LeviZ, Alexandrova S and Hofmeister H 2002 J. Appl. Phys. 924678 [17] Zi J, Zhang K and Xie X D 1998 Phys. Rev. B 58 6712 [18] Sychugov I, Juhasz R, Valenta J and Linnros J 2005 Phys. Rev. Lett. 94 087405 [19] Delerue C, Allan G and Lannoo M 1993 Phys. Rev. B 48 11024 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|