CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Phase Transition and EOS of Cinnabar (α-HgS) at High Pressure and High Temperature |
FAN Da-Wei1,3, ZHOU Wen-Ge1, LIU Cong-Qiang1, WAN Fang1,3, XING Yin-Suo1,3, LIU Jing2, LI Yan-Chun2, XIE Hong-Sen1 |
1Laboratory for Study of the Earth's Interior and Geofluids, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 5500022Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 1000493Graduate University of the Chinese Academy of Sciences, Beijing 100049 |
|
Cite this article: |
FAN Da-Wei, ZHOU Wen-Ge, LIU Cong-Qiang et al 2009 Chin. Phys. Lett. 26 046402 |
|
|
Abstract Phase relations and equation of state (EOS) of natural cinnabar (α-HgS) are investigated by high-pressure and high-temperature synchrotron x-ray powder diffraction. The unambiguous cinnabar-rocksalt structure phase boundaries are determined to be Plower(GPa)=15.54-0.014T°C and Pupper(GPa)=23.84-0.014T(°C) at 300-623K. With K' fixed at 4, we obtain K0= 37(4)GPa, (8706;K/8706; T)P=-0.025(2)GPaK-1, and α_{0}=3.79(20)×10-5K-1 for the cinnabar phase of α-HgS. The (K/8706;T)P and α0 of cinnabar phase are obtained for the first time. A nearly isotropic compression of cinnabar phase is observed by linear regressions.
|
Keywords:
64.30.+t
61.50.Ks
81.30.Dz
|
|
Received: 03 November 2008
Published: 25 March 2009
|
|
PACS: |
64.30.+t
|
|
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
81.30.Dz
|
(Phase diagrams of other materials)
|
|
|
|
|
[1] Hao A M, Gao C X, Li M, He C Y, Huang X W, Zhang D M, Yu CL, Liu H W, Ma Y Z, Tian Y J and Zou G T 2007 J. Phys.:Condens. Matter 19 425222 [2] Huang T L and Ruoff A L 1985 Phys. Rev. B 315976 [3] Huang T L and Ruoff A L 1985 J. Appl. Phys 545459 [4] Nelmes R J and McMahon M I 1998 Semiconduct.Semimetals (New York: Academic) vol 54 p 145 [5] Werner A, Hochheimer H D and Str\"{ossner K 1983 Phys. Rev. B 28 3330 [6] Nelmes R J, McMahon M I, Wright N G and Allan D R 1995 J. Phys. Chem. Solids 56 545 [7] Sun S R and Dong Y H 2005 Phys. Rev. B 72174101 [8] Freny Joy K M and Victor Jaya N 2006 Mod. Phys.Lett. B 20 963 [9] Sun S R, Li Y C, Liu J, Dong Y H and Gao C X 2006 Phys. Rev. B 73 113201 [10] Sun S R and Dong Y H 2006 Solid State Commun. 138 476 [11] Holmes N C, Moriarty J A, Gathers G R and Nellis W J.1989 J. Appl. Phys. 66 2962 [12] Holland T J and Tedfern S A 1997 Mineral. Mag. 61 65 [13] Birch F 1947 Phys. Rev. 71 809 [14] Bass J D 1995 Mineral Physics {\rm\&Crystallography (Washington, DC: American Geophysical Union) p 45 [15] Hofmeister A M 1993 Geophys. Res. Lett. 20635 [16] Nishihara Y, Takahashi E, Matsukage K and Kikegawa T 2003 Am. Mineral. 88 80 [17] Xie H S 1997 Materials Science of the Earth'Interior (Beijing: Science Press) p 100 (in Chinese) [18] Tsai M H, Dow J D, Newman K E and Kasowski R V 1990 Phys. Rev. B 41 7744 [19] Beauchamp A L, Saperas B and Rives R 1971 Can. J. Chem. 49 3579 [20] Ohtaka O, Fukui H, Kunisada T, Fujisawa T, Funakoshi K,Utsumi W, Irifune T, Kuroda K and Kikegawa T 2001 Phys. Rev. B 63 174108 [21] Meade C, Jeanloz R 1990 Geophys. Res. Lett. 17 1157 [22] Xia X, Werdner D J and Zhao H 1998 Am. Mineral. 83 68 [23] Angel R J 2000 Rev. Mineral. Geochem. 41 35 [24] Runger C E, Kubo A, Kiefer B, Meng Y, Prakapenka V B,Shen G, Cava R J and Duffy T S 2006 Phys. Chem. Miner. 33 699 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|