Chin. Phys. Lett.  2009, Vol. 26 Issue (4): 045202    DOI: 10.1088/0256-307X/26/4/045202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Numerical Investigation of Finite k Effect on Damping Rate of Geodesic Acoustic Mode in Collisionless Plasmas
GUO Wen-Feng1,3, WANG Shao-Jie2,3, LI Jian-Gang1
1Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 2300312Department of Modern Physics, University of Science and Technology of China, Hefei 2300263Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031
Cite this article:   
GUO Wen-Feng, WANG Shao-Jie, LI Jian-Gang 2009 Chin. Phys. Lett. 26 045202
Download: PDF(275KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Numerical method is applied to the investigation of the GAM damping rate with the finite k effects included. It is found that generally the damping rate given by the analytical method is smaller than that given by the numerical method, and the analytical damping rate has good approximation in the high q region (q>4). The difference between the analytical and numerical damping rates increases with the increasing k\ρi. However, for the short-wavelength case (k\ρi =0.2), the analytical methods are only good enough around q=4 because of the slow convergence of Bessel function with the large variable.
Keywords: 52.35.Bj      52.30.-q     
Received: 12 December 2008      Published: 25 March 2009
PACS:  52.35.Bj (Magnetohydrodynamic waves (e.g., Alfven waves))  
  52.30.-q (Plasma dynamics and flow)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/4/045202       OR      https://cpl.iphy.ac.cn/Y2009/V26/I4/045202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Wen-Feng
WANG Shao-Jie
LI Jian-Gang
[1] Diamond P H, Itoh S-I, Itoh K and Hahm T S 2005 Plasma Phys. Control. Fusion 47 R35
[2] Diamond P H, Itoh S I, Itoh K and Hahm T S 2004 20thIAEA Conference on Fusion Energy (Vilamoura, Portugal 1--6 November2004) IAEA/CN-116/OV/2-1
[3] Wang S 2006 Phys. Rev. Lett. 97 085002
[4] Winsor N, Hohnson J L and Dwason J M 1968 Phys.Fluids 11 2448
[5] Shi B R, Li J Q and Dong J Q 2005 Chin. Phys. Lett. 22 1179
[6] Lin Z, Hahm T S, Lee W W, Tang W M and White R B 1998 Science 281 1835
[7] Chen L, Lin Z and White R B 2000 Phys. Plasmas 7 3129
[8] Hassam A B and Drake J F 1993 Phys. Fluids B 54022
[9] Itoh K, Hallatschek K and Itoh S I 2005 Plasma Phys.Control. Fusion 47 451
[10] Gao Z, Itoh K, Sanuki H and Dong J Q 2006 Phys.Plasmas 13 100702
[11] Gao Z, Itoh K, Sanuki H and Dong J Q 2006 Proceedings of the 21$^{st$ International Atomic Energy Agency(IAEA) Fusion Energy Conference (Chengdu, China 16--21 October2006) IAEA-CN-149/TH/P2-5
[12] Gao Z, Itoh K, Sanuki H and Dong J Q 2008 Phys.Plasmas 15 072511
[13] Zonca F and Chen L 2008 Europhys. Lett. 8335001
[14] Belescu R 1988 Transport Processes in Plasmas(Amsterdam: North-Holland) vol 2 p 373
[15] Rutherford P H and Freieman E A 1968 Phys. Fluids 11 569
[16] McKee G R, Fonck R J, Jakubowski M, Burrell K H,Hallatschek K, Moyer R A, Rudakov D L, Nevins W, Porter G D, SchochP and Xu X 2003 Phys. Plasmas 10 1712
Related articles from Frontiers Journals
[1] WANG De-Yu. Electron Acceleration by a Finite-Amplitude Solitary Kinetic Alfvén Wave[J]. Chin. Phys. Lett., 2009, 26(1): 045202
[2] HE Jin-Chun, CHEN Zong-Yun, YAN Tian, HUANG Nian-Ning. Inverse Scattering Transform in Squared Spectral Parameter for DNLS Equation under Vanishing Boundary Conditions[J]. Chin. Phys. Lett., 2008, 25(7): 045202
[3] DING Jian, LI Yi, WANG Shui. Numerical Simulation of Solitary Kinetic Alfvén Waves[J]. Chin. Phys. Lett., 2008, 25(7): 045202
[4] WANG De-Yu, SONG Qi-Wu, YANG Lei. Electron Acceleration by Small-Amplitude Solitary Kinetic Alfven Wave in a Low-Beta Plasma[J]. Chin. Phys. Lett., 2008, 25(2): 045202
[5] YAN Tian, YU Jia-Lu, HUANG Nian-Ning. On Kaup and Newell's Method for Solving DNLS Equation[J]. Chin. Phys. Lett., 2008, 25(1): 045202
[6] TAN Xin-Yu, ZHANG Duan-Ming, FENG Sheng-Qin, LI Zhi-Hua, LIU Gao-Bin, FANG Ran-Ran, SUN Min. A New Dynamics Expansion Mechanism for Plasma during Pulsed Laser Deposition[J]. Chin. Phys. Lett., 2008, 25(1): 045202
[7] HUANG Feng, LIU Yan-Hong, YE Mao-Fu, WANG Long. Influence of Defect Particles on Configuration of a Two-Dimensionally Confined Dusty Plasma[J]. Chin. Phys. Lett., 2006, 23(7): 045202
[8] SHI Bing-Ren, LI Ji-Quan, DONG Jia-Qi. Geodesic Acoustic Mode in Toroidally Axisymmetric Plasmas with Non-Circular Cross Sections[J]. Chin. Phys. Lett., 2005, 22(5): 045202
[9] CHEN Xiang-Jun, HOU Li-Jie, LAM Wa Kun. Conservation Laws for the Derivative Nonlinear Schrödinger Equation with Non-vanishing Boundary Conditions[J]. Chin. Phys. Lett., 2005, 22(4): 045202
[10] XIA Sheng-Guo, LIU Ke-Fu, PAN Yuan, HU Xi-Wei. Effects of Wall Ablation on the Trigger Process in Two-Gap Capillary Plasma Generator[J]. Chin. Phys. Lett., 2003, 20(6): 045202
[11] KHORSHID Pejman, WANG Long, YANG Xuan-Zong, FENG Chun-Hua, ZHANG Peng-Yun, QI Xia-Zhi, ROUHANI Shahriar, RAHIMITABAR M. Reza, AGHAMIR M.Farzin, GHORANNEVISS Mahmud, HANTEZADEH M. Reza. Magnetohydrodynamic Activity During Limiter Biasing on the CT-6B Tokamak[J]. Chin. Phys. Lett., 2001, 18(3): 045202
[12] WANG XU-YU, HE Xian-Tu, LIU Zhen-Xing, CAO Jin-Bin. Dipole Alfven Vortex with Finite Ion Larmor Radius in a Low-Beta Plasma[J]. Chin. Phys. Lett., 2000, 17(7): 045202
[13] QU Hong-peng, GAO Qing-di, SHI Bing-ren. A Four-Fluid Model and Analysis of m = 1 Internal Kink Instability[J]. Chin. Phys. Lett., 1999, 16(6): 045202
[14] LI Qiang, LUO Cui-wen, ZHANG Peng, LI Jie-ping, YI Ping, ZHAO Chang-lin, XUE Jun. Plasma Relaxation in a Reversed Field Pinch Experiment[J]. Chin. Phys. Lett., 1998, 15(7): 045202
[15] CAO Jin-xiang, FANG Jian-dong, ZHAO Hong-bo, LIN Yi-jun, ZHANG Jia-xiang, WANG Jie-xia, DONG Yong-hui. Analyzing Characters of Plasma Wake with Method of Chaos Dynamics[J]. Chin. Phys. Lett., 1998, 15(12): 045202
Viewed
Full text


Abstract