Chin. Phys. Lett.  2009, Vol. 26 Issue (4): 044212    DOI: 10.1088/0256-307X/26/4/044212
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Ground State of Jaynes-Cummings Model: Comparison of Solutions with and without the Rotating-Wave Approximation
LI Xiao-Hong1, WANG Ke-Lin1,2, LIU Tao1
1School of Science, Southwest University of Science and Technology, Mianyang 6210102School of Science, University of Science and Technology of China, Hefei 230026
Cite this article:   
LI Xiao-Hong, WANG Ke-Lin, LIU Tao 2009 Chin. Phys. Lett. 26 044212
Download: PDF(369KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The eigenenergy spectrum of the Jaynes--Cummings (JC) model with and without the rotating-wave approximation (RWA) is investigated. The numerical analysis indicates that the non-RWA spectrum can only be approximated by the RWA in the range of sufficiently small coupling constant and detuning. In other region, the counter-rotating terms remarkably change the nature of the RWA energy spectrum. A simple expression with high accuracy for ground eigenenergy and eigenvector for non-RWA is available. The ground eigenvector for non-RWA shows that the ground state is not a dark state and very different from that of RWA which is a dark state.
Keywords: 42.50.Pq      42.50.Hz     
Received: 07 November 2008      Published: 25 March 2009
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/4/044212       OR      https://cpl.iphy.ac.cn/Y2009/V26/I4/044212
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Xiao-Hong
WANG Ke-Lin
LIU Tao
[1] Jaynes E T and Cummings F W 1963 Proc. IEEE 5189
[2] Holstein T 1959 Ann. Phys. (N.Y.) 8 325
[3] Chiorescu I et al 2004 Nature 431 159
[4] Wallraff A et al 2004 Nature 431 162
[5] Johansson J et al 2006 Phys. Rev. Lett. 96127006
[6] Schuster D I et al 2007 Nature 445 515
[7] Hennessy K et al 2007 Nature 445 896
[8] Irish E K 2007 Phys. Rev. Lett. 99 173601
[9] Leibfried D 2003 Rev. Mod. Phys. 75 281
[10] Gat O 2008 Phys. Rev. A 77 050102
[11] Irish E K et al 2005 Phys. Rev. B 72 195410
[12] Amniat-Talab M, Gu\'{erin S and Jauslin H R 2005 J.Math. Phys. 46 042311
[13] Kus M and Lewenstein M 1986 J. Phys. A: Math. Gen. 19 305
[14] Feranchuk I D, Komarov L I and Ulyanenkov A P 1996 J. Phys. A: Math. Gen. 29 4035
Related articles from Frontiers Journals
[1] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 044212
[2] LI Zhong-Hua, LI Yuan, DOU Ya-Fang, GAO Jiang-Rui, ZHANG Jun-Xiang**. Comparison of the Noise Properties of Squeezed Probe Light in Optically Thick and Thin Quantum Coherence Media for Weak and Strong Coupling Lights[J]. Chin. Phys. Lett., 2012, 29(1): 044212
[3] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 044212
[4] LI Jun-Wang, WU Chun-Wang, DAI Hong-Yi** . Quantum Information Transfer in Circuit QED with Landau–Zener Tunneling[J]. Chin. Phys. Lett., 2011, 28(9): 044212
[5] ZHENG An-Shou, **, LIU Ji-Bing, CHEN Hong-Yun . N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage[J]. Chin. Phys. Lett., 2011, 28(8): 044212
[6] KANG Hui-Peng, **, WANG Chuan-Liang, LIN Zhi-Yang, CHEN Yong-Ju, WU Ming-Yan, QUAN Wei, LIU Hong-Ping, LIU Xiao-Jun*** . Intensity and Polarization Effects in Short-Pulse Multiphoton Ionization of Xenon[J]. Chin. Phys. Lett., 2011, 28(8): 044212
[7] XU Qing, HU Xiang-Ming** . Nonadiabatic Effects of Atomic Coherence on Laser Intensity Fluctuations in Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2011, 28(7): 044212
[8] XUE Peng . Quantum Computing via Singlet-Triplet Spin Qubits in Nanowire Double Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(7): 044212
[9] BAI Li-Hua**, HOU Lu-Qiang, CUI Ting-Ting, LIU Yu-Heng, WANG Yan, ZHANG Hui-Fang, DENG Dong-Mei . Asymmetry of Photodetachment of F by Few-Cycle Infrared Laser Fields: Laser-Intensity Effects[J]. Chin. Phys. Lett., 2011, 28(6): 044212
[10] XUE Peng** . Entangling Gate of Dipolar Molecules Coupled to a Photonic Crystal[J]. Chin. Phys. Lett., 2011, 28(5): 044212
[11] ZHANG Peng-Fei, ZHANG Yu-Chi, LI Gang, DU Jin-Jin, ZHANG Yan-Feng, GUO Yan-Qiang, WANG Jun-Min, ZHANG Tian-Cai**, LI Wei-Dong . Sensitive Detection of Individual Neutral Atoms in a Strong Coupling Cavity QED System[J]. Chin. Phys. Lett., 2011, 28(4): 044212
[12] ZHONG Zhi-Rong**, ZHANG Bin, LIN Xiu, SU Wan-Jun . An Effective Heisenberg Spin Chain in a Fiber-Cavity System[J]. Chin. Phys. Lett., 2011, 28(12): 044212
[13] ZOU Wei-Ping, ZHANG Gang, XUE Zheng-Yuan** . Arbitrary and Fast Quantum Gate with Semiconductor Double-Dot Molecules on a Chip[J]. Chin. Phys. Lett., 2011, 28(12): 044212
[14] CHEN Zhi-Hua**, LIN Xiu-Min . Generating Entangled States of Multilevel Atoms through a Selective Atom-Field Interaction[J]. Chin. Phys. Lett., 2011, 28(1): 044212
[15] ZHANG Xue-Hua, HU Xiang-Ming, KONG Ling-Feng, ZHANG Xiu. High-Frequency Einstein-Podolsky-Rosen Entanglement via Atomic Memory Effects in Four-Wave Mixing[J]. Chin. Phys. Lett., 2010, 27(9): 044212
Viewed
Full text


Abstract