Chin. Phys. Lett.  2009, Vol. 26 Issue (4): 040504    DOI: 10.1088/0256-307X/26/4/040504
GENERAL |
Adaptive Function Projective Synchronization of Discrete-Time Chaotic Systems
LI Yin1, LI Biao1, CHEN Yong 1,2
1Department of Mathematics and Nonlinear Science Center, Ningbo University, Ningbo 3152112Institute of Theoretical Computing, East China Normal University, Shanghai 200062
Cite this article:   
LI Yin, LI Biao, CHEN Yong 2009 Chin. Phys. Lett. 26 040504
Download: PDF(566KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By backstepping control law and the active control method, adaptive function projective synchronization of 2D and 3D discrete-time chaotic systems with uncertain parameters are investigated. To illustrate the effectiveness of the new scheme, some numerical examples are given.
Keywords: 05.45.Yv      02.30.Jr      42.65.Tg     
Received: 31 December 2008      Published: 25 March 2009
PACS:  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/4/040504       OR      https://cpl.iphy.ac.cn/Y2009/V26/I4/040504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Yin
LI Biao
CHEN Yong
[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Park J H 2005 Int. J. Nonli. Sci. Numer. Simul. 6 201
[3] Bai E W and Lonngren K E 2000 Cha. Soli. Frac. 11 1041
[4] Park J H and Kwon OM 2005 Cha. Soli. Frac. 23 445
[5] Wu X and Lu J 2003 Cha. Soli. Frac. 18 721
[6]Chen G and Dong X 1998 From Chaos to Order(Singapore: World Scientific) chap 1 p 10
[7]Yan Z Y 2005 Phys. Lett. A 342 309
[8]Kanellakopoulos I and Kokotovic P V 1991 IEEE Trans.Autom. Control. 36 1241
[9]Wang C and Ge S S 2001 Int. J. Bifur. Chaos Appl.Sci. Eng. 11 1115
[10]Ren H P and Liu D 2002 Chin. Phys. Let. 191054
[11] Chen Y and Li X 2007 Z. Naturfor. 62a 22
[12] Hitzl DL and Zele F 1985 Physi. D 14 305
[13]Feng C F, Zhang Y and Wang Y H 2006 Chin. Phys.Lett. 23 1418
[14]Li G H 2007 Chaos, Solitons {\rm \& Fractals 32 1786
[15]L\"u J H, Han F L, Yu X H and Chen G R 2004 Automatics 40 1677
[16]L\"u J H and Chen G R 2006 Int. J. Bifur. Chaos. 16 775
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 040504
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 040504
[3] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 040504
[4] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 040504
[5] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 040504
[6] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 040504
[7] M. A. Ismail,S. J. Tan,N. S. Shahabuddin,S. W. Harun,**,H. Arof,H. Ahmad. Performance Comparison of Mode-Locked Erbium-Doped Fiber Laser with Nonlinear Polarization Rotation and Saturable Absorber Approaches[J]. Chin. Phys. Lett., 2012, 29(5): 040504
[8] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 040504
[9] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 040504
[10] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 040504
[11] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 040504
[12] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 040504
[13] ZHAO Guang-Zhen, XIAO Xiao-Sheng, MEI Jia-Wei, YANG Chang-Xi. Multiple Dissipative Solitons in a Long-Cavity Normal-Dispersion Mode-Locked Yb-Doped Fiber Laser[J]. Chin. Phys. Lett., 2012, 29(3): 040504
[14] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 040504
[15] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 040504
Viewed
Full text


Abstract