GENERAL |
|
|
|
|
Adaptive Function Projective Synchronization of Discrete-Time Chaotic Systems |
LI Yin1, LI Biao1, CHEN Yong 1,2 |
1Department of Mathematics and Nonlinear Science Center, Ningbo University, Ningbo 3152112Institute of Theoretical Computing, East China Normal University, Shanghai 200062 |
|
Cite this article: |
LI Yin, LI Biao, CHEN Yong 2009 Chin. Phys. Lett. 26 040504 |
|
|
Abstract By backstepping control law and the active control method, adaptive function projective synchronization of 2D and 3D discrete-time chaotic systems with uncertain parameters are investigated. To illustrate the effectiveness of the new scheme, some numerical examples are given.
|
Keywords:
05.45.Yv
02.30.Jr
42.65.Tg
|
|
Received: 31 December 2008
Published: 25 March 2009
|
|
|
|
|
|
[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821 [2] Park J H 2005 Int. J. Nonli. Sci. Numer. Simul. 6 201 [3] Bai E W and Lonngren K E 2000 Cha. Soli. Frac. 11 1041 [4] Park J H and Kwon OM 2005 Cha. Soli. Frac. 23 445 [5] Wu X and Lu J 2003 Cha. Soli. Frac. 18 721 [6]Chen G and Dong X 1998 From Chaos to Order(Singapore: World Scientific) chap 1 p 10 [7]Yan Z Y 2005 Phys. Lett. A 342 309 [8]Kanellakopoulos I and Kokotovic P V 1991 IEEE Trans.Autom. Control. 36 1241 [9]Wang C and Ge S S 2001 Int. J. Bifur. Chaos Appl.Sci. Eng. 11 1115 [10]Ren H P and Liu D 2002 Chin. Phys. Let. 191054 [11] Chen Y and Li X 2007 Z. Naturfor. 62a 22 [12] Hitzl DL and Zele F 1985 Physi. D 14 305 [13]Feng C F, Zhang Y and Wang Y H 2006 Chin. Phys.Lett. 23 1418 [14]Li G H 2007 Chaos, Solitons {\rm \& Fractals 32 1786 [15]L\"u J H, Han F L, Yu X H and Chen G R 2004 Automatics 40 1677 [16]L\"u J H and Chen G R 2006 Int. J. Bifur. Chaos. 16 775 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|