Chin. Phys. Lett.  2009, Vol. 26 Issue (4): 040501    DOI: 10.1088/0256-307X/26/4/040501
GENERAL |
Periodic, Quasiperiodic and Chaotic Discrete Breathers in a Parametrical Driven Two-Dimensional Discrete Klein-Gordon Lattice
XU Quan1,2, TIAN Qiang2
1Department of Physics, Daqing Normal University, Daqing 1637122Department of Physics, Beijing Normal University, Beijing 100875
Cite this article:   
XU Quan, TIAN Qiang 2009 Chin. Phys. Lett. 26 040501
Download: PDF(415KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study a two-dimensional lattice of anharmonic oscillators with only quartic nearest-neighbor interactions, in which discrete breathers can be explicitly constructed by an exact separation of their time and space dependence. DBs can stably exist in the two-dimensional Klein-Gordon lattice with hard on-site potential. When a parametric driving term is introduced in the factor multiplying the harmonic part of the on-site potential of the system, we can obtain the stable quasiperiodic discrete breathers and chaotic discrete breathers by changing the amplitude of the driver.
Keywords: 05.45.Pq      05.45.Xt      02.30.Jr      63.20.Pw      63.20.Ry     
Received: 18 December 2008      Published: 25 March 2009
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Xt (Synchronization; coupled oscillators)  
  02.30.Jr (Partial differential equations)  
  63.20.Pw (Localized modes)  
  63.20.Ry (Anharmonic lattice modes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/4/040501       OR      https://cpl.iphy.ac.cn/Y2009/V26/I4/040501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Quan
TIAN Qiang
[1] Sivers A J and Takeno S 1988 Phys. Rev. Lett. 61 970
[2] Mackay R S and Aubry S 1994 Nonlinearity 71623
[3] Marin J L and Aubry S 1994 Nonlinearity 9 1501
[4] Flach S 1994 Phys. Rev. E 50 3134
[5] Aubry S 1997 Physica D 103 201
[6] Flach S and Willis C R 1998 Phys. Rep. 295 181
[7] Aubry S 2006 Physica D 216 1
[8] Johansson M and Aubry S 1997 Nonlinearity 1011571
[9] Kevrekidis P G and Weinstein M I 2003 Mathematics andComputers in Simulation 62 65
[10] Mainadis P and Bountis T 2006 Phys. Rev. E 73046211
[11] Chechin G M, Dzhelauhova G S and Mehonoshina E A 2006 Phys. Rev. E 74 036608
[12] Burlakov V M, Kiselev S A and Rupasov V I 1990 Phys.Lett. A 147 130
[13] Burlakov V M and Kiselev S A 1991 Sov. Phys. JETP 72 845
[14] Cretegny T, Dauxois T, Ruffo S and Torcini A 1998 Physica D 121 109
[15] Kousake I, Yusuke D, Bao F F and Takuji K 2007 Physica D 225 184
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 040501
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 040501
[3] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 040501
[4] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 040501
[5] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 040501
[6] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 040501
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 040501
[8] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 040501
[9] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 040501
[10] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 040501
[11] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 040501
[12] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 040501
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 040501
[14] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 040501
[15] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 040501
Viewed
Full text


Abstract