Chin. Phys. Lett.  2009, Vol. 26 Issue (4): 040401    DOI: 10.1088/0256-307X/26/4/040401
GENERAL |
Statistical-Mechanical Entropy of a Black Hole with a Global Monopole to All Orders in Planck Length
HE Feng, ZHAO Fan
College of Physics, Hunan University of Science and Technology, Xiangtan 411201
Cite this article:   
HE Feng, ZHAO Fan 2009 Chin. Phys. Lett. 26 040401
Download: PDF(170KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Considering corrections to all orders in the Planck length on the quantum state density from the generalized uncertainty principle, we calculate the statistical entropy of the scalar field in the global monopole black hole spacetime without any artificial cutoff. It is shown that the entropy is proportional to the horizon area.
Keywords: 04.70.Dy      04.62.+v     
Received: 16 January 2009      Published: 25 March 2009
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  04.62.+v (Quantum fields in curved spacetime)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/4/040401       OR      https://cpl.iphy.ac.cn/Y2009/V26/I4/040401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HE Feng
ZHAO Fan
[1] Bekenstein J D 1973 Phys. Rev. D 7 2333
[2] Hawking S W 1975 Commum. Math. Phys. 43 199
[3] `t Hooft G 1985 Nucl. Phys. B 256 727
[4] Lee M H and Kim J K 1996 Phys. Rev. D 54 3904
[5] Lee M H and Kim J K 1996 Phys.Lett. A 212 323
[6] Mann R B and Solodukhin S N 1996 Phys. Rev. D 54 3932
[7] Winstanley E 2001 Phys. Rev. D 63 084013
[8] Jing J L and Yan M L 2001 Phys. Rev. D 64064015
[9] Jing J L and Yan M L 2001 Phys. Rev. D 63084028
[10] Li X 2002 Phys. Rev. D 65 084005
[11] Wei Y H, Wang Y C and Zhao Z 2002 Phys. Rev. D 65 124023
[12] Ghosh T and SenGupta S 2008 Phys. Rev. D 78024045
[13] Li X and Zhao Z 2000 Phys. Rev. D 62 104001
[14] He F, Zhao Z and Kim S W 2001 Phys. Rev. D 64044025
[15] Chang L N, Minic D, Okamura N and Takeuchi T 2002 Phys. Rev. D 65 125028
[16] Nouicer K 2007 Phys. Lett. B 646 63
[17] Kim Y W 2008 Phys Rev. D 77 067501
[18] Li X 2002 Phys. Lett. B 540 9
[19] Kim W, Kim Y W and Park Y J 2006 Phys. Rev. D 74 104001
[20] Kim W, Kim Y W and Park Y J 2007 Phys. Rev. D 75 127501
[21] Yoon M 2007 Phys. Rev. D 76 047501
[22] Vilenkin A 1985 Phys. Rep. 121 263
[23] Barriola M and Vilenkin A 1989 Phys. Rev. Lett. 63 341
[24] Birrell N D znd Davies P C 1982 Quantum Fields inthe Curved Space (Cambridge: Cambridge University)
[25] Wald R M 1984 General Relativity (Chicago: TheUniversity of Chicago)
[26] Kim Y W and Park Y J 2007 Phys. Lett. B 655172
Related articles from Frontiers Journals
[1] CHEN Bin,NING Bo**,ZHANG Jia-Ju. Boundary Conditions for NHEK through Effective Action Approach[J]. Chin. Phys. Lett., 2012, 29(4): 040401
[2] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 040401
[3] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 040401
[4] M Sharif**, G Abbas . Phantom Accretion onto the Schwarzschild de-Sitter Black Hole[J]. Chin. Phys. Lett., 2011, 28(9): 040401
[5] Faiz-ur-Rahman, Salahuddin, M. Akbar** . Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction[J]. Chin. Phys. Lett., 2011, 28(7): 040401
[6] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 040401
[7] CAO Guang-Tao**, WANG Yong-Jiu . Interference Phase of Mass Neutrino in Schwarzschild de Sitter Field[J]. Chin. Phys. Lett., 2011, 28(2): 040401
[8] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 040401
[9] WEI Yi-Huan**, CHU Zhong-Hui . Thermodynamic Properties of a Reissner–Nordström Quintessence Black Hole[J]. Chin. Phys. Lett., 2011, 28(10): 040401
[10] GUO Guang-Hai**, DING Xia . Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes[J]. Chin. Phys. Lett., 2011, 28(10): 040401
[11] WEI Yi-Huan. Mechanical and Thermal Properties of the AH of FRW Universe[J]. Chin. Phys. Lett., 2010, 27(5): 040401
[12] LIU Chang-Qing. Absorption Cross Section and Decay Rate of Stationary Axisymmetric Einstein-Maxwell Dilaton Axion Black Hole[J]. Chin. Phys. Lett., 2010, 27(4): 040401
[13] ZHAO Fan, HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole[J]. Chin. Phys. Lett., 2010, 27(2): 040401
[14] JIANG Ke-Xia, KE San-Min, PENG Dan-Tao, FENG Jun. Hawking radiation as tunneling and the unified first law of thermodynamics at the apparent horizon of the FRW universe[J]. Chin. Phys. Lett., 2009, 26(7): 040401
[15] M. Akbar, Asghar Qadir. Gauss-Bonnet and Lovelock Gravities and the Generalized Second Law of Thermodynamics[J]. Chin. Phys. Lett., 2009, 26(6): 040401
Viewed
Full text


Abstract