Chin. Phys. Lett.  2009, Vol. 26 Issue (4): 040305    DOI: 10.1088/0256-307X/26/4/040305
GENERAL |
Controlling Chaos Probability of a Bose-Einstein Condensate in a Weak Optical Superlattice
XU Jun1, LUO Xiao-Bing2
1Center of Experimental Teaching for Common Basic Courses, South China Agriculture University, Guangzhou 5106422Department of Physics, Jinggangshan University, Ji'an 343009
Cite this article:   
XU Jun, LUO Xiao-Bing 2009 Chin. Phys. Lett. 26 040305
Download: PDF(318KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The spatial chaos probability of a Bose--Einstein condensate perturbed by a weak optical superlattice is studied. It is demonstrated that the spatial chaotic solution appears with a certain probability in a given parameter region under a random boundary condition. The effects of the lattice depths and wave vectors on the chaos probability are illustrated, and different regions associated with different chaos probabilities are found. This suggests a feasible scheme for suppressing and strengthening chaos by adjusting the optical superlattice experimentally.
Keywords: 03.75.Lm      05.45.Gg      03.75.Kk      05.45.Yv     
Received: 12 December 2009      Published: 25 March 2009
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  05.45.Gg (Control of chaos, applications of chaos)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/4/040305       OR      https://cpl.iphy.ac.cn/Y2009/V26/I4/040305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Jun
LUO Xiao-Bing
[1] Aderson B P and Kasevich M A, 1998 Science 2821686
[2] Fu J and Tang S F 2003 Chin. Phys. Lett. 201426
[3] Xie B and Jing H 2002 Chin. Phys. 11 115
[4] Wu B and Niu Q 2001 Phys. Rev. A 64 061603R
[5] Wang D L et al 2007 Chin. Phys. Lett. 24 1817
[6] Zhang A X and Xue J K 2008 Chin. Phys. Lett. 25 39
[7] Huang G X 2003 Chin. Phys. Lett. 20 802
[8] Drummond P D et al 1998 Phys. Rev. Lett. 813055
[9] Chong G, Hai W and Xie Q 2004 Phys. Rev. E 70036213
[10] Hai W et al 2002 Phys. Rev. E 66 026202
[11] Zhang C et al 2004 Phys. Rev. Lett. 93 074101
[12] Xu J, Hai W H and Li H 2007 Chin. Phys. 162244
[13] Liu W M et al 2002 Phys. Rev. Lett. 88 170408
[14] Ott E et al 1990 Phys. Rev. Lett. 64 1196
[15] Ma J et al 2008 Chin. Phys. Lett. 25 3582
[16] Zhu Q , Hai W, Rong S 2009 Cent. Eur. J. Phys. 7 (accepted)
[17] Kevin M C and Alan V O 1993 Phys. Rev. Lett. 71 65
[18] Li X W, Zhang H Q, Xue Y and Hu G 2005 Phys. Rev.E 71 016216
[19] Chong G, Hai W H and Xie Q T 2004 Chaos 14217
[20] Zhu Q, Hai W, Deng H 2007 Chin. Phys. Lett. 24 3077
[21] Jackson A D, Kavoulakis G M and Pethick C J 1998 Phys. Rev. A 58 2417
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 040305
[2] WANG Qiang, YE Chong, FU Li-Bin. Quantum Cyclotron Orbits of a Neutral Atom Trapped in a Triple Well with a Synthetic Gauge Field[J]. Chin. Phys. Lett., 2012, 29(6): 040305
[3] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 040305
[4] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 040305
[5] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 040305
[6] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 040305
[7] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 040305
[8] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 040305
[9] CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap[J]. Chin. Phys. Lett., 2012, 29(5): 040305
[10] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 040305
[11] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 040305
[12] TIE Lu, XUE Ju-Kui. The Anisotropy of Dipolar Condensate in One-Dimensional Optical Lattices[J]. Chin. Phys. Lett., 2012, 29(2): 040305
[13] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 040305
[14] ZHU Bi-Hui, , LIU Shu-Juan, XIONG Hong-Wei, ** . Evolution of the Interference of Bose Condensates Released from a Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 040305
[15] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 040305
Viewed
Full text


Abstract