Chin. Phys. Lett.  2009, Vol. 26 Issue (4): 040301    DOI: 10.1088/0256-307X/26/4/040301
GENERAL |
The generation of Entangled Qudits and their Application in Probabilistic Superdense Coding
Lin Qing
College of Information Science and Engineering, Huaqiao University (Xiamen), Xiamen 361021
Cite this article:   
Lin Qing 2009 Chin. Phys. Lett. 26 040301
Download: PDF(214KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A scheme of the generation of entangled qutrits is presented, and then is generalized to entangled ququads and entangled qudits. With the entangled qutrits, an experimental scheme of probability superdense coding with only linear optical elements is proposed. It is shown that this scheme will be suitable for the entangled ququads, even for the entangled qudits if some nonlinearity is used. This scheme is feasible in the laboratory with the current experimental technology.
Keywords: 03.67.Hk      03.67.Mn      42.50.Dv     
Received: 12 December 2008      Published: 25 March 2009
PACS:  03.67.Hk (Quantum communication)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Dv (Quantum state engineering and measurements)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/4/040301       OR      https://cpl.iphy.ac.cn/Y2009/V26/I4/040301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lin Qing
[1] Bennett C H et al 2002 IEEE Trans. Inf. Theory 48 2637
[2] Bennett C H et al 1993 Phys. Rev. Lett. 701895
[3] Mair A et al 2001 Nature London 412 313 Vaziri A et al 2002 Phys. Rev. Lett. 89 240401
[4] Neves L et al 2004 Phys. Rev. A 69 042305 Neves L et al 2005 Phys. Rev. Lett. 94 100501 O'Sullivan-Hale M N et al 2005 Phys. Rev. Lett. 94 220501
[5] Thew R T et al 2004 Phys. Rev. Lett. 93 010503 de Riedmatten H et al 2004 Phys. Rev. A 69R050304
[6] Howell J C et al 2002 Phys. Rev. Lett. 88030401 Bogdanov Y I et al 2004 Phys. Rev. Lett. 93230503 Moreva E V et al 2006 Phys. Rev. Lett. 97 023602 Mikami H and Kobayashi T 2007 Phys. Rev. A 75022325 Vallone G et al 2007 Phys. Rev. A 76 012319 Li Y M et al 2008 Phys. Rev. A 77 015802 Lanyon B P et al 2008 Phys. Rev. Lett. 100 060504
[7] {\.Zukowski M et al 1997 Phys. Rev. A 55 2564
[8] Mattle K et al 1996 Phys. Rev. Lett. 76 4656
[9] Mizuno J et al 2005 Phys. Rev. A 71 012304
[10] Pati A K et al 2005 Phys. Rev. A 72 012329
[11] Lin Q et al 2006 J. Phys. B: At. Mol. Opt. Phys. 39 3649
[12] Kwiat P G et al 1999 Phys. Rev. A 60 R773
[13] Reck M et al 1994 Phys. Rev. Lett. 73 58
[14] Ivanovic I D 1987 Phys. Lett. A 123 257 Peres A 1988 Phys. Lett. A 128 19 Chefles A 1998 Phys. Lett. A 239 339 Chefles A 2000 Contemp. Phys. 41 401 Duan L M and Guo G C 1998 Phys. Rev. Lett. 804999 Sun Y et al 2001 Phys. Rev. A 64 022311
[15] L\"{utkenhaus N et al 1999 Phys. Rev. A 593295 Calsamiglia J and L\"{ukenhaus N 2001 Appl. Phys. B 72 67
[16] Xiang G Y et al 2005 Phys. Rev. A 72 012315
[17] Silicon Avalanche Photodiodes (APDs) Operating in GeigerMode, from the Company of Perkin-Elmer, part number: SPCM-AQR-15-FC
[18] Nemoto K et al 2004 Phys. Rev. Lett. 93250502
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 040301
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 040301
[3] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 040301
[4] CHEN Peng,QIAN Jun,CHEN Dong-Yuan,HU Zheng-Feng**,WANG Yu-Zhu**. Interference of a Narrowband Biphoton with Double Electromagnetically Induced Transparency in an N-Type System[J]. Chin. Phys. Lett., 2012, 29(4): 040301
[5] GAO Gui-Long,SONG Fu-Quan,HUANG Shou-Sheng,WANG Yan-Wei,FAN Zhi-Qiang,YUAN Xian-Zhang,JIANG Nian-Quan**. Producing and Distinguishing χ-Type Four-Qubit States in Flux Qubits[J]. Chin. Phys. Lett., 2012, 29(4): 040301
[6] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 040301
[7] CAO Ming-Tao, HAN Liang, QI Yue-Rong, ZHANG Shou-Gang, GAO Hong, LI Fu-Li. Calculation of the Spin-Dependent Optical Lattice in Rubidium Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(3): 040301
[8] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 040301
[9] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 040301
[10] S. P. Toh**, Hishamuddin Zainuddin, Kim Eng Foo,. Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity[J]. Chin. Phys. Lett., 2012, 29(1): 040301
[11] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 040301
[12] SUN Ke-Wei**, CHEN Qing-Hu . Ground-State Behavior of the Quantum Compass Model in an External Field[J]. Chin. Phys. Lett., 2011, 28(9): 040301
[13] LIU Zhi-Qiang, LIANG Xian-Ting** . Non-Markovian and Non-Perturbative Entanglement Dynamics of Biomolecular Excitons[J]. Chin. Phys. Lett., 2011, 28(8): 040301
[14] ZHENG An-Shou, **, LIU Ji-Bing, CHEN Hong-Yun . N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage[J]. Chin. Phys. Lett., 2011, 28(8): 040301
[15] FANG Bin, LIU Bi-Heng, HUANG Yun-Feng**, SHI Bao-Sen, GUO Guang-Can . Spectrum Analysis of a Pulsed Photon Source Generated from Periodically Poled Lithium Niobate[J]. Chin. Phys. Lett., 2011, 28(7): 040301
Viewed
Full text


Abstract