Chin. Phys. Lett.  2009, Vol. 26 Issue (4): 040203    DOI: 10.1088/0256-307X/26/4/040203
GENERAL |
Homoclinic Breather-Wave with Convective Effect for the (1+1)-Dimensional Boussinesq Equation
DAI Zheng-De1,3, XIAN Da-Quan2, LI Dong-Long3
1School of Mathematics and Physics, Yunnan University, Kunming 6500912School of Science, Southwest University of Science and Technology, Mianyang 6210103Department of Information and Computing Science, Guangxi Institute of Technology, Liuzhou 545005
Cite this article:   
DAI Zheng-De, XIAN Da-Quan, LI Dong-Long 2009 Chin. Phys. Lett. 26 040203
Download: PDF(410KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new type of two-wave solution, i.e. a homoclinic breather-wave solution with convective effect, for the (1+1)-dimensional Boussinesq equation is obtained using the extended homoclinic test method. Moreover, the mechanical feature of the wave solution is investigated and the phenomenon of homoclinic convection of the two-wave is exhibited on both sides of the equilibrium. These results enrich the dynamical behavior of (1+1)-dimensional nonlinear wave fields.
Keywords: 02.30.Jr      05.45.Yv      47.11.+j     
Received: 06 January 2009      Published: 25 March 2009
PACS:  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
  47.11.+j  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/4/040203       OR      https://cpl.iphy.ac.cn/Y2009/V26/I4/040203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DAI Zheng-De
XIAN Da-Quan
LI Dong-Long
[1] Deift P, Tomei C and Trubowitz E 1982 Commun. PureAppl. Math. 35 567
[2]Bona J L and Sachs R L 1988 Comm. Math. Phys. 118 15
[3]Weiss J 1985 J. Math. Phys. 26 258
[4]Dai Z D, Huang J, Jiang M R and Wang S H 2005 Chaos,Solitons {\rm \& Fractals 26 1189
[5]Dai Z D, Jiang M R, Dai Q Y and Li S L 2006 Chin.Phys. Lett. 23 1065
[6]Hu X B, Guo B L and Tam H W 2003 J. Phys. Soc. Jpn. 72 189
[7]Dai Z D, Huang J and Jiang M R 2006 Phys. Lett. A 352 411
[8]Dai Z D and Huang J 2005 Chin. J. Phys. 43 349
[9]Dai Z D, Li Z T, Li D L and Liu Z J 2007 Chin. Phys.Lett. 24 1429
[10]Dai Z D, Li S L, Dai Q Y and Huang J 2007 Chaos,Solitons {\rm \& Fractals 34(4) 1148
[11]Dai Z D, Li Z T, Liu Z J and Li D L 2008 Phys. Lett.A 372 3010
[12]Dai Z D, Liu Z J and Li D L 2008 Chin. Phys. Lett. 25 1531
[13]Dai Z D, Liu J, Zeng X P and Liu Z J 2008 Phys.Lett. A 372 5984
[14]Hirota R 1971 Phys. Rev. Lett 27 1192
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 040203
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 040203
[3] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 040203
[4] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 040203
[5] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 040203
[6] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 040203
[7] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 040203
[8] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 040203
[9] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 040203
[10] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 040203
[11] SHI Lei**,XIONG Wei,GAO Shu-Sheng. The Effect of Gas Leaks on Underground Gas Storage Performance During Development and Operation[J]. Chin. Phys. Lett., 2012, 29(4): 040203
[12] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 040203
[13] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 040203
[14] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 040203
[15] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 040203
Viewed
Full text


Abstract