Chin. Phys. Lett.  2009, Vol. 26 Issue (4): 040202    DOI: 10.1088/0256-307X/26/4/040202
GENERAL |
Approximate Homotopy Direct Reduction Method: Infinite Series Reductions to Perturbed mKdV Equations
JIAO Xiao-Yu1, YAO Ruo-Xia1,2,3, LOU Sen-Yu 1,2,4
1Department of Physics, Shanghai Jiao Tong University, Shanghai 2000302Department of Physics, Ningbo University, Ningbo 3152113School of Computer Science, Shaanxi Normal University, Xi'an 7100624School of Mathematics, Fudan University, Shanghai 200433
Cite this article:   
JIAO Xiao-Yu, YAO Ruo-Xia, LOU Sen-Yu 2009 Chin. Phys. Lett. 26 040202
Download: PDF(241KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An approximate homotopy direct reduction method is proposed and applied to two perturbed modified Korteweg-de Vries (mKdV) equations with fourth-order dispersion and second-order dissipation. The similarity reduction equations are derived to arbitrary orders. The method is valid not only for single soliton solutions but also for the Painlevé II waves and periodic waves expressed by Jacobi elliptic functions for both fourth-order dispersion and second-order dissipation. The method is also valid for strong perturbations.
Keywords: 02.30.Jr     
Received: 29 January 2009      Published: 25 March 2009
PACS:  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/4/040202       OR      https://cpl.iphy.ac.cn/Y2009/V26/I4/040202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIAO Xiao-Yu
YAO Ruo-Xia
LOU Sen-Yu
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 040202
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 040202
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 040202
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 040202
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 040202
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 040202
[7] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 040202
[8] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 040202
[9] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 040202
[10] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 040202
[11] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 040202
[12] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 040202
[13] WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation[J]. Chin. Phys. Lett., 2011, 28(6): 040202
[14] ZHAO Li-Yun, GUO Bo-Ling, HUANG Hai-Yang** . Blow-up Solutions to a Viscoelastic Fluid System and a Coupled Navier–Stokes/Phase-Field System in R2[J]. Chin. Phys. Lett., 2011, 28(6): 040202
[15] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 040202
Viewed
Full text


Abstract