Chin. Phys. Lett.  2009, Vol. 26 Issue (4): 040201    DOI: 10.1088/0256-307X/26/4/040201
GENERAL |
New Periodic Solution to Jacobi Elliptic Functions of a (2+1)-Dimensional BKP Equation and a Generalized Klein-Gordon Equation
Ma Hong-Cai1, Deng Ai-Ping1, Qin Zhen-Yun2
1Department of Applied Mathematics, College of Science, Donghua University, Shanghai 2016202Department of Mathematics, Fudan University, Shanghai 200433
Cite this article:   
Ma Hong-Cai, Deng Ai-Ping, Qin Zhen-Yun 2009 Chin. Phys. Lett. 26 040201
Download: PDF(442KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract With the help of the homogeneous balance method, the Jacobi elliptic expansion method and the auxiliary equation method, the first elliptic function equation is used to obtain the Jacobi doubly periodic wave solutions of the (2+1)-dimensional B-type Kadomtsev-Petviashvili (BKP) equation and the generalized Klein-Gordon equation. The method is also valid for other (1+1)-dimensional and higher dimensional systems.
Keywords: 02.03.Ik      02.30.Jr     
Received: 02 February 2009      Published: 25 March 2009
PACS:  02.03.Ik  
  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/4/040201       OR      https://cpl.iphy.ac.cn/Y2009/V26/I4/040201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ma Hong-Cai
Deng Ai-Ping
Qin Zhen-Yun
[1] Ablowitz M J and Clarkson P A 1991 Solitons,Nonlinear Evolution Equations and Inverse Scattering (Cambridge:Cambridge University)
[2] Wadati M, Sanuki H and Konno K 1975 Prog. Theor.Phys. 53 419
[3] Gardner C S, Green J M, Kruskal M D and Miura R M 1967 Phys. Rev. Lett. 19 1095
[4] Hirota R 1971 Phys. Rev. Lett. 27 1192
[5] Coely A et al 2001 Backlund and DarbouxTransformations (Providence, RI: American Mathematical Society)
[6] Malfeit W 1992 Am. J. Phys. 60 650
[7] Yan C T 1996 Phys. Lett. A 224 77
[8] Wang M L 1996 Phys. Lett. A 213 279
[9] Fan E G 2000 Phys. Lett. A277 212
[10] Fan E G 2001 Phys. Lett. A 282 18
[11] Zhang J F, Ren D F, Wang M L et al 2003 Chin. Phys. 12 825 Fu Z T and Liu S K 2003 Commun. Theor. Phys. 39531
[12] Date E, Jimbo M, Kashiwara M and Miwa T 1982 Physica D 4 343 He J S, Cheng Y and R\"{omerb R A 2006 J. High EnergyPhys. 03 103 He J S and Li X D arxiv:0811.4016 He J S, Wu Z W and Cheng Y 2007 J. Math. Phys. 48113519 Hu X B et al 2006 Inverse Problems 22 1903
[13] Jimbo M and Miwa T 1983 Publ. RIMS. Kyoto.University 19 943
[14] Bai C 2001 Phys. Lett. A 288 191 Sirendaoreji 2006 Phys. Lett. A 356 124 Nickle HH and Beers Brian L 1972 J. Phys. A: Gen. Phys. 5 1658 Cruz Mand Arredondo J H 2008 J. Math. Phys. 49 113512
[15] Dodd R K 1982 Solitons Nonlinear Wave Equations(London: Academic)
[16] Liu S K, Fu Z T and Liu S D 2006 Phys. Lett. A 351 59
[17] Jeffrey A and Mohamad M N 1991 Wave Motion 14369
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 040201
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 040201
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 040201
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 040201
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 040201
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 040201
[7] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 040201
[8] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 040201
[9] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 040201
[10] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 040201
[11] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 040201
[12] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 040201
[13] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 040201
[14] WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation[J]. Chin. Phys. Lett., 2011, 28(6): 040201
[15] ZHAO Li-Yun, GUO Bo-Ling, HUANG Hai-Yang** . Blow-up Solutions to a Viscoelastic Fluid System and a Coupled Navier–Stokes/Phase-Field System in R2[J]. Chin. Phys. Lett., 2011, 28(6): 040201
Viewed
Full text


Abstract