Chin. Phys. Lett.  2009, Vol. 26 Issue (12): 120308    DOI: 10.1088/0256-307X/26/12/120308
GENERAL |
Bright Soliton Solutions in Degenerate Femi Gas near Feshbach Resonance
LIU Hong1,2, HE Dai-Hai2, LOU Sen-Yue3, HE Xian-Tu4
1Logistics School, Beijing Wuzi University, Beijing 1011492Department of Mathematics and Statistics, McMaster University,Hamilton, Ontario L8S 4K1, Canada3Department of Physics, Ningbo University, Ningbo 3152114Institute of Applied Physics and Computational Mathematics, Beijing PO Box 8009, Beijing 100088
Cite this article:   
LIU Hong, HE Dai-Hai, LOU Sen-Yue et al  2009 Chin. Phys. Lett. 26 120308
Download: PDF(934KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract For molecular and standard Bose-Einstein condensates and Fermi gases near Feshbach resonances, the general polytropic equation of states is P∝n γ+1. According to the effective power γ≈0.5~1.3, we resolve the time-dependent nonlinear Schrodinger equation and find series bright solitons. The analysis could help in the search for matter-wave soliton trains in degenerate Femi gas.
Keywords: 03.75.-b      05.30.Fk      05.45.Yv     
Received: 26 May 2009      Published: 27 November 2009
PACS:  03.75.-b  
  05.30.Fk (Fermion systems and electron gas)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/12/120308       OR      https://cpl.iphy.ac.cn/Y2009/V26/I12/120308
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Hong
HE Dai-Hai
LOU Sen-Yue
HE Xian-Tu
[1] Shin Y, Schunck C H, Schirotzek A and Ketterle W 2008 Nature 451 689
[2] Feshbach H 1958 Ann. Phys. (N.Y.) 5 357 Feshbach H 1962 Ann. Phys. (N.Y.) 19 287 Inouye S, Andrews M R, Stenger J, Miesner H, Stamper-Kurn DM and Ketterle W 1998 Nature 392 151
[3] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys.Rev. 106 162 Bardeen J, Cooper L N and Schrieffer J R 1957 Phys.Rev. 108 1175
[4] Eagles D M 1969 Phys. Rev. 186 456 Altmeyer A, Riedl S, Kohstall C, Wright M J, Geursen R,Bartenstein M, Chin C, Hecker D J and Grimm1 R 2007 Phys. Rev.Lett. 98 040401
[5] Donley E A, Claussen N R, Cornish S L, Roberts J L,Cornell E A and Wieman C E 2001 Nature 412 295
[6] Donley E A, Claussen N R, Thomson S T and Wieman C E 2002 Nature 4175 29
[7] Bourdel T, Khaykovich L, Cubizolles J, Zhang J, Chevy F,Teichmann M, Tarruell L, Kokkelmans S J J M F and Salomon C 2004 Phys. Rev. Lett. 93 050401
[8] Regal C A, Greiner M and Jin D S 2004 Phys. Rev.Lett. 92 040403 Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, KermanA J and Ketterle W 2004 Phys. Rev. Lett. 92 120403
[9] Chin C, Bartenstein M, Altmeyer A, Riedl S, Jochim S,Hecker Denschlag J and Grimm R 2004 Science 305 1128 Abo-Shaeer J R, Schirotzek A, Schunck C H, Ketterle W,Zwierlein M W 2005 Nature 435 1047
[10] Schunck C H, Zwierlein M W, Schirotzek A and Ketterle W2007 Phys. Rev. Lett. 98 050404
[11] Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S,Chin C, Hecker Denschlag J and Grimm R 2003 Science 3022101 Greinnei M, Regal C A and Jin D S 2003 Nature 426 537
[12] Heiselberg H 2004 Phys. Rev. Lett. 93 040402
[13] Heiselberg H 2001 Phys. Rev. A 63 043606
[14] Antezza M, Dalfovo F, Pitaevskii L P and Stringari S 2007 Phys. Rev. A 76 043610
[15] Sensarma R, Randeria M and Ho T L 2006 Phys. Rev.Lett. 96 090403
[16] Perez-Garcia V M, Michinel H and Herrero H 1998 Phys. Rev. A 57 3837
[17] Burger S, Bongs K, Dettmer S, Ertmer W and Sengstock K1999 Phys. Rev. Lett. 83 5198
[18] Denschlag J, Simsarian J E, Feder D L, Charles W C,Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K,Reinhardt W P, Rolston S L, Schneider B I and Phillips W D 2000 Science 287 97
[19] Zachary Dutton, Michael Budde, Christopher Slowe and LeneVestergaard H 2001 Science 293 663
[20] Strecker K E, Partridge G B, Truscott A G and Hulet R G2002 Nature 417 150
[21] Khaykovich L, Schreck F, Ferrari G, Bourdel T, CubizollesJ, Carr L D, Castin Y and Salomon C 2002 Science 2561290
[22] Leung V Y F, Truscott A G and Baldwin K G H 2002 Phys. Rev. A 66 061602(R)
[23] Manini N and Salasnich L 2005 Phys. Rev. A 71033625
[24] Yin J, Ma Y, Huang G 2006 Phys. Rev. A 74013609
[25] Zhou Y, Huang G 2007 Phys. Rev. A 75 023611
[26] Kim Y E and Zubarev A L 2004 Phys. Rev. A 70033612
[27] Ghosh T K and Machida K 2006 Phys. Rev. A 73013613
[28] Hu H, Minguzzi A, Liu X J and Tosi M P 2004 Phys.Rev. Lett. 93 190403
[29] Yu X L, Li Z B and Liu W M 2009 Phys. Rev. Lett. 102 185301
[30] Ji A C, Liu W M, Song J L and Zhou F 2008 Phys. Rev.Lett. 101 010402
[31] Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev.Lett. 94 050402
[32] Li H and Wang D N 2008 Chin. Phys. Lett. 253864
[33] Zhang A X and Xue J K 2008 Chin. Phys. Lett. 25 39
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 120308
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 120308
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 120308
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 120308
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 120308
[6] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 120308
[7] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 120308
[8] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 120308
[9] WEI Bo-Bo* . One-Dimensional w-Component Fermions and Bosons with Delta Function Interaction[J]. Chin. Phys. Lett., 2011, 28(9): 120308
[10] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 120308
[11] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 120308
[12] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 120308
[13] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 120308
[14] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 120308
[15] WU Jian-Ping** . A New Wronskian Condition for a (3+1)-Dimensional Nonlinear Evolution Equation[J]. Chin. Phys. Lett., 2011, 28(5): 120308
Viewed
Full text


Abstract