CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Room-Temperature Anisotropic Ferromagnetism in Fe-Doped In2O3 Heteroepitaxial Films |
XING Peng-Fei1, CHEN Yan-Xue1, TANG Min-Jian1, YAN Shi-Shen1, LIU Guo-Lei1, MEI Liang-Mo1, JIAO Jun1,2 |
1School of Physics and National Key Laboratory of Crystal Materials, Shandong University, Jinan 2501002Department of Physics, Portland State University, PO Box 751, Portland OR, 97207, U.S.A. |
|
Cite this article: |
XING Peng-Fei, CHEN Yan-Xue, TANG Min-Jian et al 2009 Chin. Phys. Lett. 26 117503 |
|
|
Abstract Fe-doped In2O3 films are grown epitaxially on YSZ (100) substrates by pulsed laser deposition. The in-situ reflection high-energy electron diffraction, the atomic force microscopy, and the x-ray diffraction patterns show that the films have a well defined cubic structure epitaxially oriented in the (100) direction. Room temperature ferromagnetism is observed by an alternating gradient magnetometer. Strong perpendicular magnetic anisotropy with a remnant magnetization ratio of 0.83 and a coercivity of 2.5kOe is revealed. Both the structural and the magnetic measurements suggest that this ferromagnetism is an intrinsic property deriving from the spin-orbit coupling between the diluted Fe atoms.
|
Keywords:
75.30.Gw
75.50.Pp
75.30.-m
75.70.Ak
|
|
Received: 19 February 2009
Published: 30 October 2009
|
|
PACS: |
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
75.30.-m
|
(Intrinsic properties of magnetically ordered materials)
|
|
75.70.Ak
|
(Magnetic properties of monolayers and thin films)
|
|
|
|
|
[1] Chopra K L, Major S and Pandya D K 1983 Thin SolidFilms 102 1 [2] Vossen J L 1977 Phys. Thin Films 9 1 [3] Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R,Osorio Guillen J M, Johansson B and Gehring G A 2003 NatureMater. 2 673 [4] Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T,Kawasaki M, Ahmet P, Chikyow T, Koshihara S and Koinuma H 2001 Science 291 854 [5] Ogale S B, Choudhary R J, Buban J P, Lofland S E, Shinde1S R, Kale S N, Kulkarni V N, Higgins J, Lanci C, Simpson J R,Browning N D, Das Sarma S, Drew H D, Greene R L and Venkatesan T2003 Phys. Rev. Lett. 91 77205 [6] Philip J, Punnoose A, Kim B I, Reddy K M, Layne S, HolmesJ O, Satpati B, Leclair P R, Santos T S and Moodera J S 2006 Nature Mater. 5 298 [7] Philip J, Theodoropoulou N, Berera G, Moodera J S andSatpati B 2004 Appl. Phys. Lett. 85 777 [8] Hong N H, Sakai J, Huong N T and Briz\'{e V 2005 Appl. Phys. Lett. 87 102505 [9] He J, Xu S, Yoo Y K, Xue Q, Lee H C, Cheng S, Xiang X D,Dionne G F and Takeuchi I 2005 Appl. Phys. Lett. 86052503 [10] Yoo Y K, Xue Q, Lee H C, Cheng S, Xiang X D, Dionne G F,Xu S, He J, Chu Y S, Preite S D, Lofland S E and Takeuchi I 2005 Appl. Phys. Lett. 86 042506 [11] Peleckis G, Wang X L and Dou S X 2006 Appl. Phys.Lett. 88 132507 [12] Kohiki S, Murakawa Y, Hori K, Shimooka H, Tajiri T,Deguchi H, Oku M, Arai M, Mitome M and Bando Y 2005 Jpn. J.Appl. Phys. 44 L979 [13] Ohno T, Kawahara T, Tanaka H, Kawai T, Oku M, Okada K andKohiki S 2005 Jpn. J. Appl. Phys. 45 L957 [14] Xing P F, Chen Y X, Yan Shi-Shen, Liu G L, Mei L M, WangK, Han X D and Zhang Z 2008 Appl. Phys. Lett. 92 022513 [15] Venkatesan M, Fitzgerald C B, Lunney J G and Coey J M D2004 Phys. Rev. Lett. 93 177206 [16] Vodungbo B, Zheng Y, Vidal F, Demaille D, Etgens V H andMosca D H 2007 Appl. Phys. Lett. 90 062510 [17] Jamet M, Barski A, Devillers T, Poydenot V, Dujardin R,Guillemaud P B, Rothman J, Amalric E B, Marty A, Cibert J, Mattana Rand Tatarenko S 2006 Nature Mater. 5 653 [18] Shen A, Ohno H, Matsukura F, Sugawara Y, Akiba N, KuroiwaT, Oiwa A, Endo A, Katsumoto S and Iye Y 1997 J. Cryst. Growth 175/176 1069 [19] Sati P, Hayn R, R. Kuzian, Regnier S, Schafer S, StepanovA, Morhain C, Deparis C, Laugt M, Goiran M and Golacki Z 2006 Phys. Rev. Lett. 96 017203 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|