Chin. Phys. Lett.  2009, Vol. 26 Issue (11): 117203    DOI: 10.1088/0256-307X/26/11/117203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Derivative of Electron Density in Non-Equilibrium Green's Function Technique and Its Application to Boost Performance of Convergence
YUAN Ze, CHEN Zhi-Dong, ZHANG Jin-Yu, HE Yu, ZHANG Ming, YU Zhi-Ping
Institute of Microelectronics, Tsinghua University, Beijing 100084
Cite this article:   
YUAN Ze, CHEN Zhi-Dong, ZHANG Jin-Yu et al  2009 Chin. Phys. Lett. 26 117203
Download: PDF(814KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The non-equilibrium Green's function (NEGF) technique provides a solid foundation for the development of quantum mechanical simulators. However, the convergence is always of great concern. We present a general analytical formalism to acquire the accurate derivative of electron density with respect to electrical potential in the framework of NEGF. This formalism not only provides physical insight on non-local quantum phenomena in device
simulation, but also can be used to set up a new scheme in solving the Poisson equation to boost the performance of convergence when the NEGF and Poisson equations are solved self-consistently. This method is illustrated by a simple one-dimensional example of an N++N+N++ resistor. The total simulation time and iteration number are largely reduced.
Keywords: 72.10.-d      73.63.-b     
Received: 20 October 2008      Published: 30 October 2009
PACS:  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/11/117203       OR      https://cpl.iphy.ac.cn/Y2009/V26/I11/117203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUAN Ze
CHEN Zhi-Dong
ZHANG Jin-Yu
HE Yu
ZHANG Ming
YU Zhi-Ping
[1] Ren Z et al 2003 IEEE Trans. Electron. Dev. 501914
[2]Svizhenko A et al 2002 J. Appl. Phys. 91 2343
[3]Venugopal R et al 2002 J. Appl. Phys. 92 3730
[4]Martinez A et al 2007 J. Comput. Electron. 6215
[5]Guan X, Zhang M, Liu Q and Yu Z 2007 IEDM Tech. Dig.(Washington DC 10--12 December 2007) p 761
[6]Griffiths D J 1994 Introduction to Quantum Mechanics(New Jersey: Prentice Hall)
[7]Sancho M P L et al 1985 J. Phys. 15 851
[8]Datta S 2005 Quantum Transport: Atom to Transistor(Cambridge: Cambridge University)
[9]Datta S 2000 Superlattices and Microstructures 28 253
[10]Cahay M et al 1987 Appl. Phys. Lett. 50 612
[11]Venturi F, Smith R K, Sngiorgi E C, Pinto M R and Ricco B1989 IEEE Trans. Computer-Aided Design 8 360
Related articles from Frontiers Journals
[1] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 117203
[2] PAN Li-Jun, JIA Yu, **, SUN Qiang, HU Xing . Electronic Properties of Boron Nanotubes under Uniaxial Strain: a DFT study[J]. Chin. Phys. Lett., 2011, 28(8): 117203
[3] JIA Zhi-Chun, HU Zhen-Peng, ZHAO Ai-Di, LI Zhen-Yu, LI Bin** . Scanning Tunneling Spectroscopy of Metal Phthalocyanines on a Au(111) Surface with a Ni Tip[J]. Chin. Phys. Lett., 2011, 28(7): 117203
[4] SHI Feng, , ZHANG Yi-Jun, CHENG Hong-Chang, ZHAO Jing, XIONG Ya-Juan, CHANG Ben-Kang** . Theoretical Revision and Experimental Comparison of Quantum Yield for Transmission-Mode GaAlAs/GaAs Photocathodes[J]. Chin. Phys. Lett., 2011, 28(4): 117203
[5] Attia A. Awadalla, Adel H. Phillips** . Thermal Shot Noise through Boundary Roughness of Carbon Nanotube Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(1): 117203
[6] CHEN Zhi-Dong, ZHANG Jin-Yu, YU Zhi-Ping. Numerical Analysis of Alternating-Current Small-Signal Response in Graphene Nanoribbons[J]. Chin. Phys. Lett., 2010, 27(8): 117203
[7] WAN Lang-Hui, YU Yun-Jin, WANG Bin. Spin Filter of Graphene Nanoribbon Based Structure[J]. Chin. Phys. Lett., 2010, 27(8): 117203
[8] KONG Xiao-Lan, XIONG Yong-Jian. Resonance Transport of Graphene Nanoribbon T-Shaped Junctions[J]. Chin. Phys. Lett., 2010, 27(4): 117203
[9] SU Wen-Yong, LUO Yi. Weak Gate Effect in 1,3-Benzenedithiol Molecular Device[J]. Chin. Phys. Lett., 2010, 27(4): 117203
[10] LÜ, Shu-Yuan, ZHAO Jian-Lin, ZHANG Dong. Improved Microfluidic Coupled-Cavity Waveguides for Slow Light Transmission[J]. Chin. Phys. Lett., 2010, 27(3): 117203
[11] TIAN Guang-Jun, SU Wen-Yong. Two Possible Configurations for Silver-C60-Silver Molecular Devices and Their Conductance Characteristics[J]. Chin. Phys. Lett., 2009, 26(6): 117203
[12] ZHANG Jing-Xiang, LI Hui, ZHANG Xue-Qing, LIEW Kim-Meow. Electric Conductivity of Phosphorus Nanowires[J]. Chin. Phys. Lett., 2009, 26(5): 117203
[13] CHEN Zhi-Dong, ZHANG Jin-Yu, YU Zhi-Ping. Time-Dependent Transport in Nanoscale Devices[J]. Chin. Phys. Lett., 2009, 26(3): 117203
[14] PENG Zu-Lin, LIANG S., DENG Luo-Gen. Transition Metal Silicide Nanowires Growth and Electrical Characterization[J]. Chin. Phys. Lett., 2009, 26(12): 117203
[15] LUO Song-Lin, WEI Ya-Dong. Properties of Graphene Based Parametric Pump[J]. Chin. Phys. Lett., 2009, 26(11): 117203
Viewed
Full text


Abstract