CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Growth of High Quality Strained-Si on Ultra-Thin SiGe-on-Insulator Substrate |
LIU Xu-Yan1,2, LIU Wei-Li1, MA Xiao-Bo1,2, CHEN Chao1,2, SONG Zhi-Tang1, LIN Cheng-Lu1 |
1State Key Laboratory of Functional Materials for Informatics, Laboratory of Nanotechnology, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 2000502Graduate University of Chinese Academy of Sciences, Beijing 100190 |
|
Cite this article: |
LIU Xu-Yan, LIU Wei-Li, MA Xiao-Bo et al 2009 Chin. Phys. Lett. 26 116802 |
|
|
Abstract Ultra-thin and near-fully relaxed SiGe substrate is fabricated using a modified Ge condensation technique, and then a 25-nm-thick biaxially tensile strained-Si with a low rms roughness is epitaxially deposited on a SiGe-on-Insulator (SGOI) substrate by ultra high vacuum chemical vapor deposition (UHVCVD). High-Resolution cross-sectional transmission electron microscope (HR-XTEM) observations reveal that the strained-Si/SiGe layer is dislocation-free and the atoms at the interface are well aligned. Furthermore, secondary ion mass spectrometry (SIMS) results show a sharp interface between layers and a uniform distribution of Ge in the SiGe layer. One percent in-plane tensile strain in the strained-Si layer is confirmed by ultraviolet (UV) Raman spectra, and the stress maintained even after a 30-s rapid thermal annealing (RTA) process at 1000°C. According to those results, devices based on strained-Si are expected to have a better performance than the conventional ones.
|
Keywords:
68.55.Ag
81.15.-z
68.37.Lp
|
|
Received: 23 October 2008
Published: 30 October 2009
|
|
PACS: |
68.55.ag
|
(Semiconductors)
|
|
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
68.37.Lp
|
(Transmission electron microscopy (TEM))
|
|
|
|
|
[1] Tony A and Sumant S 2006 Potentials IEEE 25 No4 31 [2] Welser J and Hoyt J L et al 1994 Tech. Dig. Int.Electron Devices Meet. 947 373 [3] Park J G and Lee G S et al 2006 Mater. Sci. Engin. B 134 142 [4] Tezuka T and Sugiyama N et al 2001 Appl. Phys. Lett. 79 1798 [5] Tezuka T, Sugiyama N and Takagi S 2003 J. Appl.Phys. 94 7553 [6] Di Z F, Zhang M, Liu W L et al 2005 J. Vac. Sci.Technol. B 23 4 [7] Di Z F, Zhang M, Liu W L et al 2005 Mater. Sci.Engin. B 124 153 [8] Lee S W, Chueh Y L, Chen L J and Chou L J 2005 J.Vac. Sci. Technol. A 23 4 [9] Di Z F and Chu P K et al 2005 J. Appl. Phys. 97 064504 [10] Lim Y S, Jeong J S, Lee J Y, Kim H S, Shon H K, Kim H Kand Moon D W 2005 J. Electron. Mater. 31 529 [11] Tsang J C, Mooney P M, Dacol F and Chu J O 1994 J.Appl. Phys. 75 8098 [12] Dobrosz P, Bull S J, Olsen S H and O'Neill A G 2004 Z. Metallk. 95 335 [13] Lockwood D J and Baribeau J M 1992 Phys. Rev. B 45 8565 [14] Wong L H, Wong C C, Liu J P and Sohn D K et al 2005 Jpn. J. Appl. Phys. 44 7922 [15] Mooney P M, Dacol F H, Tsang J C and Chu J O 1993 Appl. Phys. Lett. 62 2069 [16] Dobrosz P, Bull S J, Olsen S H and O'Neill A G 2005 Surf. Coatings Technol. 200 1755 [17] Olsen S H and O'Neil A G 2005 J. Appl. Phys. 97 114504 [18] Di Z F and Huang A P et al 2005 J. Cryst. Growth 281 275 [19] Luo Y H, Liu J L, Jin G, Wan J, Wang K L, Moore C D,Goorsky M S, Chih C, and Tu K N 2001 Appl. Phys. Lett. 78 1219 [20] Yin H, Hobart K D, Kub F J, Shieh S R, Duffy T S andSturm J C 2004 Appl. Phys. Lett. 84 3624 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|