Chin. Phys. Lett.  2009, Vol. 26 Issue (11): 116201    DOI: 10.1088/0256-307X/26/11/116201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Efficient and Robust Design for Absorbing Boundary Conditions in Atomistic Computations
FANG Ming, TANG Shao-Qiang
Center for Applied Physics and Technology, and LTCS, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871
Cite this article:   
FANG Ming, TANG Shao-Qiang 2009 Chin. Phys. Lett. 26 116201
Download: PDF(360KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose an efficient and robust way to design absorbing boundary conditions in atomistic computations. An optimal discrete boundary condition is obtained by minimizing a functional of a reflection coefficient integral over a range of wave numbers. The minimization is performed with respect to a set of wave numbers, at which transparent absorption is reached. Compared with the optimization with respect to the boundary condition coefficients suggested by E and Huang [Phys.Rev.Lett. 87(2001)133501], we reduce considerably the number of independent variables and the computing cost. We further demonstrate with numerical examples that both the optimization and the wave absorption are more robust in the proposed design.
Keywords: 62.30.+d      43.20.+g     
Received: 26 May 2009      Published: 30 October 2009
PACS:  62.30.+d (Mechanical and elastic waves; vibrations)  
  43.20.+g (General linear acoustics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/11/116201       OR      https://cpl.iphy.ac.cn/Y2009/V26/I11/116201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FANG Ming
TANG Shao-Qiang
[1] Liu W K, Karpov E and Park H S 2005 Nano Mechanic andMaterials (New York: Wiley)
[2] Chen H Y, Yang T, Luo X D and Ma H R 2008 Chin. Phys.Lett. 25 3696
[3] Engquist B and Majda A 1977 Math. Comput. 31629
[4] Higdon R L 1994 SIAM J. Numer. Anal. 31 64
[5] Keller J B and Givoli D 1989 J. Comput. Phys. 82 172
[6] Yang D, Wang S, Zhang Z and Teng J 2003 Bull. Seism.Soc. Am. 93 2389
[7] Adelman S A and Doll J D 1974 J. Chem. Phys. 61 4242
[8] Cai W, de Koning M, Bulayov V V and Yip S 2000 Phys. Rev. Lett. 85 3213
[9] Dreher M and Tang S Q 2008 Comput. Mech. 41683
[10] E W, Engquist B, Li X, Ren W and Vanden-Eijinden E 2007 Commun. Comput. Phys. 2 367
[11] E W and Huang Z 2001 Phys. Rev. Lett. 87135501
[12] Li X and E W 2006 Commun. Comput. Phys. 1 136
[13] Qian D, Wagner G J and Liu W K 2004 Comput. MethodsAppl. Mech. Engrg. 193 1603
[14] Tang S Q 2008 J. Comput. Phys. 227 4038
[15] Wagner G J, Karpov E G and Liu W K 2004 Comput.Methods Appl. Mech. Engrg. 193 1579
[16] Karpov E G, Wagner G J and Liu W K 2005 Int. J.Numer. Methods Engrg. 62 1250
[17] Park H, Karpov E G, Klein P and Liu W K 2005 J.Comput. Phys. 207 588
Related articles from Frontiers Journals
[1] WANG Jian-Wei, WANG Gang, CHEN Sheng-Bing, WEN Ji-Hong. Broadband Attenuation in Phononic Beams Induced by Periodic Arrays of Feedback Shunted Piezoelectric Patches[J]. Chin. Phys. Lett., 2012, 29(6): 116201
[2] WANG Yi-Ze, LI Feng-Ming. Band Gap Properties of Magnetoelectroelastic Grid Structures with Initial Stress[J]. Chin. Phys. Lett., 2012, 29(3): 116201
[3] CHEN Sheng-Bing**, WEN Ji-Hong, WANG Gang, HAN Xiao-Yun, WEN Xi-Sen . Locally Resonant Gaps of Phononic Beams Induced by Periodic Arrays of Resonant Shunts[J]. Chin. Phys. Lett., 2011, 28(9): 116201
[4] DENG Ming-Xi**, XIANG Yan-Xun, LIU Liang-Bing . Time-Domain Second-Harmonic Generation of Primary Lamb-Wave Propagation in an Elastic Plate[J]. Chin. Phys. Lett., 2011, 28(7): 116201
[5] YU Li-Li**, SHOU Wen-De, HUI Chun** . Theoretical Calculation of a Focused Acoustic Field from a Linear Phased Array on a Concave Cylindrical Transducer[J]. Chin. Phys. Lett., 2011, 28(10): 116201
[6] LE Yi, SHEN Yong**, XIA Jie . Calculation of Loudspeaker Cabinet Diffraction and Correction[J]. Chin. Phys. Lett., 2011, 28(10): 116201
[7] ZHANG Bi-Xing, SHI Fang-Fang, WU Xian-Mei, GONG Jun-Jie, ZHANG Cheng-Guang. Imaging for Borehole Wall by a Cylindrical Linear Phased Array[J]. Chin. Phys. Lett., 2010, 27(9): 116201
[8] B. Y. Thakore, S. G. Khambholja, P. H. Suthar, N. K. Bhatt, A. R. Jani. Collective Modes and Elastic Constants of Liquid Al83Cu17 Binary Alloy[J]. Chin. Phys. Lett., 2010, 27(9): 116201
[9] LI Yong, HOU Zhi-Lin, FU Xiu-Jun, Badreddine M Assouar. Symmetric and Anti-Symmetric Lamb Waves in a Two-Dimensional Phononic Crystal Plate[J]. Chin. Phys. Lett., 2010, 27(7): 116201
[10] ZHAO Ya-Jun, CHENG Qian, QIAN Meng-Lu. Frequency Response of the Sample Vibration Mode in Scanning Probe Acoustic Microscope[J]. Chin. Phys. Lett., 2010, 27(5): 116201
[11] GUAN Zhi-Qiang, LUO Gang, MONTELIUS Lars, XU Hong-Xing,. Electromechanical Behavior of Interdigitated SiO2 Cantilever Arrays[J]. Chin. Phys. Lett., 2010, 27(2): 116201
[12] WEN Ji-Hong**, SHEN Hui-Jie, YU Dian-Long, WEN Xi-Sen . Theoretical and Experimental Investigation of Flexural Wave Propagating in a Periodic Pipe with Fluid-Filled Loading[J]. Chin. Phys. Lett., 2010, 27(11): 116201
[13] ZHANG Hai-Yan, CHEN Xian-Hua, CAO Ya-Ping, YU Jian-Bo . Focusing of Time Reversal Lamb Waves and Its Applications in Structural Health Monitoring[J]. Chin. Phys. Lett., 2010, 27(10): 116201
[14] CHENG Qin, WU Heng-An, WANG Yu, WANG Xiu-Xi. Orientation and Rate Dependence of Wave Propagation in Shocked Beta-SiC from Atomistic Simulations[J]. Chin. Phys. Lett., 2009, 26(7): 116201
[15] QIU Chang-Chun, ZHANG Bi-Xing, ZHANG Yu-Jun, CUI Zhi-Wen. Coupling of Acoustical Plane p-Wave to a Cased Borehole[J]. Chin. Phys. Lett., 2009, 26(11): 116201
Viewed
Full text


Abstract