CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Electro-oxidation of Formic Acid on Carbon Supported Edge-Truncated Cubic Platinum Nanoparticles Catalysts |
LI She-Qiang, FU Xing-Qiu, HU Bing, DENG Jia-Jun, CHEN Lei |
Institute of Materials Physics, North China Electric Power University, Beijing 102206 |
|
Cite this article: |
LI She-Qiang, FU Xing-Qiu, HU Bing et al 2009 Chin. Phys. Lett. 26 116104 |
|
|
Abstract The oxidation of formic acid on edge-truncated cubic platinum nanoparticles/C catalysts is investigated. X-ray photoelectron spectroscopy analysis indicates that the surface of edge-truncated cubic platinum nanoparticles is composed of two types of coordination sites. The oxidation behavior of formic acid on edge-truncated cubic platinum nanoparticles/C is investigated using cyclic voltammetry. The apparent activation energies are found to be 54.2, 55.0, 61.8, 69.5, 71.9, 69.26, 65.28kJ/mol at 0.15, 0.3, 0.4, 0.5, 0.6, 0.65, 0.7V, respectively. A specific surface area activity of 1.76mA12539;cm-2 at 0.4V indicates that the edge-truncated cubic Platinum nanoparticles are a promising anode catalyst for direct formic acid fuel cells.
|
Keywords:
61.46.Df
81.07.-b
82.45.h
|
|
Received: 06 July 2009
Published: 30 October 2009
|
|
PACS: |
61.46.Df
|
(Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
82.45.h
|
|
|
|
|
|
[1] Kita H, Lei H W 1999 J. Electroanal. Chem. 388167 [2] Ad\v{zi\'c R R, Tripkovic A V and Markovi\'c N M 1983 J. Electroanal. Chem. 150 79 [3] Sun S G, Yang Y Y 1999 J. Electroanal. Chem. 467 1211 [4] Okamoto H, Tanaka N, Naito M 1996 Chem. Phys. Lett. 248 289 [5] Zhou L, Yu X F, Fu X F, Hao Z H, Li K Y 2008 Chin.Phys. Lett. 25 1776 [6] Capon A, Parsons R 1973 J. Electroanal. Chem. 44 1 [7] Capon A, Parsons R 1973 J. Electroanal. Chem. 45 205 [8] Willsau J, Heitbaum J 1986 Electrochim. Acta 31 943 [9] Wolter O, Willsau J and Heitbaum J 1985 J.Electrochem. Soc. 132 1635 [10] Ad\v{zi\'c R R, Tripkovic A V and Vesovic V B 1986 J. Electroanal. Chem. 204 329 [11] Tripkovic A V, Popovic K and Adzic R R 1991 J. Chem.Phys. 88 1635 [12] Armadi I S, Wang Z L, Green T C, Henglein A and El-SayedM A 1996 Science 272 1924 [13] Liu Y G, Shi S L, Xue X Y, Zhang J Y, Wang Y G and Wang TH 2008 Appl. Phys. Lett. 92 203105 [14] Kim S F, Connor S, Somorjai G A and Yang P 2005 J.Phys. Chem. B 109 188 [15] D\"{uckers K, Bonzel H P and Wesner DA 1986 Surf.Sci. 166 141 [16] Baetzold R C, Apai G, Shustorovich E and Jaeger R 1982 Phys. Rev. B 26 4022 [17] D\"{uckers K, Prince K C, Bonzel H P, Ch\'{ab V andHorn H 1987 Phys. Rev. B 36 6292 [18] Roychowdhury C, Matsumoto F, Zeldovich V B, Warren S C,Mutolo P F, Ballesteros M, Wiesner U, Abrun\~{a H D and DiSalvo F J2006 Chem. Mater. 18 3365 [19] Jiang J H and Kucernak A 2002 J. Electroanal.Chem. 520 64 [20] Sun S G, Clavilier J and Bewick A 1988 J.Electroanal. Chem. 240 147 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|