Chin. Phys. Lett.  2009, Vol. 26 Issue (11): 116103    DOI: 10.1088/0256-307X/26/11/116103
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Synthesis and Properties of Magnetic Composites of Carbon Nanotubes/Fe Nanoparticle
XU Mei-Hua1,2, QI Xiao-Si1, ZHONG Wei1, YE Xiao-Juan1, DENG Yu1, AU
Chaktong3, JIN Chang-Qing1, YANG Zai-Xing1, DU You-Wei1
1National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 2100932Department of Applied Physics, Nanjing University of Technology, Nanjing 2100093Chemistry Department, Hong Kong Baptist University, Hong Kong
Cite this article:   
XU Mei-Hua, QI Xiao-Si, ZHONG Wei et al  2009 Chin. Phys. Lett. 26 116103
Download: PDF(567KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Magnetic composites of carbon nanotubes (CNTs) are synthesized by the in situ catalytic decomposition of benzene at temperatures as low as 400°C over Fe nanoparticles (mean grain size = 26nm) produced by sol-gel fabrication and hydrogen reduction. The yield of CNT composite is up to about 3025% in a run of 6h. FE-SEM and HRTEM investigations reveal that one-dimensional carbon species are produced in a large quantity. A relatively high value of magnetization is observed for the composite due to the encapsulation of ferromagnetic Fe3C and/or α-Fe. The method is suitable for the mass-production of CNT composites that contain magnetic nanoparticles.
Keywords: 61.46.Fg      68.37.Ma      68.37.Og     
Received: 05 May 2009      Published: 30 October 2009
PACS:  61.46.Fg (Nanotubes)  
  68.37.Ma (Scanning transmission electron microscopy (STEM))  
  68.37.Og (High-resolution transmission electron microscopy (HRTEM))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/11/116103       OR      https://cpl.iphy.ac.cn/Y2009/V26/I11/116103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Mei-Hua
QI Xiao-Si
ZHONG Wei
YE Xiao-Juan
DENG Yu
AUChaktong
JIN Chang-Qing
YANG Zai-Xing
DU You-Wei
[1] Iijima S 1991 Nature 354 56
[2] Xu N, Ding J W, Chen H B and Ma M M 2009 Chin. Phys.Lett. 26 076102
[3] Qiu W, Kang Y L, Lei Z K, Qin Q H and Li Q 2009 Chin.Phys. Lett. 26 080701
[4] Baughman R H, Zakhidov A A and de Heer W A 2002 Science. 297 787
[5] Korneva G, Ye H H, Gogotsi Y, Halverson D, Friedman G,Bradley J C and Kornev K G 2005 Nano Lett. 5 879
[6] Thess A, Lee R, Nikolaev P, Dai H J, Petit P, Robert J, XuC H, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E,Tomanek D, Fischer J E and Smalley R E 1996 Science 273483
[7] Journet C, Maser W K, Bernier P, Loiseau A, delaChapelle ML, Lefrant S, Deniard P, Lee R and Fischer J E 1997 Nature 388 756
[8] Terranova M L, Sessa V and Rossi M 2006 Chem. Vap.Deposit. 12 315
[9] Yacam\'{an M J, Yoshida M M and Rend\'{on L M 1993 Appl. Phys. Lett. 62 202
[10] Piedigrosso P, Konya Z, Colomer J F, Fonseca A, VanTendeloo G and Nagy J B 2000 Phys. Chem. Chem. Phys. 2163
[11] Sarangi D and Karimi A 2003 Nanotechnology 14109
[12] Xie J N, Mukhopadyay K, Yadev J and Varadan V K 2003 Smart. Mater. Struct. 12 744
[13] Cheng J P, Zhang X B, Liu F, Tu J P, Ye Y, Ji Y J andChen C P 2003 Carbon 41 1965
[14] Cheng J P, Zhang X B, Tu H, Tao X Y, Ye Y and Liu F 2006 Mater. Chem. Phys. 95 12
[15] Ivanov V, Fonseca A, Nagy J B, Lucas A, Lambin P,Bernaerts D and Zhang X B 1995 Carbon 33 1727
[16] Fan Y Y, Li F, Cheng H M, Su G, Yu Y D and Shen Z H 1998 J. Mater. Res. 13 2342
[17] Cheng H M, Li F, Su G, Pan H Y, He L L, Sun X andDresselhaus M S 1998 Appl. Phys. Lett. 72 3282
[18] Tang N J, Zhong W, Gedanken A and Du Y W 2006 J.Phys. Chem. B 110 11772
[19] Tang N J, Zhong W, Au C T, Gedanken A, Yang Y and Du Y W2007 Adv. Funct. Mater. 17 1542
[20] Tang N J, Yang Y, Lin K J, Zhong W, Au C T and Du Y W2008 J. Phys. Chem. C 112 10061
[21] Kumar M and Ando Y 2003 Chem. Phys. Lett. 374521
[22] Lv R T, Kang F Y, Wang W X, Wei J Q, Gu J L, Wang K L andWu D H 2007 Carbon 45 1433
[23] Mahanandia P and Nanda K K 2008 Nanotechnology 19 155602
[24] Chai S P, Zein S H S and Mohamed A R 2007 DiamondRelat. Mater. 16 1656
[25] Rao A M, Richter E, Bandow S, Chase B, Eklund P C,Williams K A, Fang S, Subbaswamy K R, Menon M, Thess A, Smalley R E,Dresselhaus G and Dresselhaus M S 1997 Science 275 187
[26] Li W Z, Zhang H, Wang C Y, Zhang Y, Xu L W, Zhu K and XieS S 1997 Appl. Phys. Lett. 70 2684
Related articles from Frontiers Journals
[1] DING Bin-Beng, PAN Feng, FENG Zhe-Chuan, FA Tao, CHENG Feng-Feng, YAO Shu-De** . Structural Analysis of In xGa1−xN/GaN MQWs by Different Experimental Methods[J]. Chin. Phys. Lett., 2011, 28(7): 116103
[2] LI Yong, ZHENG Li-Ping, ZHANG Wei**, XU Zi-Jian**, REN Cui-Lan, HUAI Ping, ZHU Zhi-Yuan . Charge and Mass Effects on Low Energy Ion Channeling in Carbon Nanotubes[J]. Chin. Phys. Lett., 2011, 28(6): 116103
[3] ZHANG Fu-Chun**, ZHANG Wei-Hu, DONG Jun-Tang, ZHANG Zhi-Yong . First-Principles Study of Fe-Doped ZnO Nanowires[J]. Chin. Phys. Lett., 2011, 28(12): 116103
[4] LV Wen-Bin, WANG Lai**, WANG Jia-Xing, HAO Zhi-Biao, LUO Yi . Density Increase of Upper Quantum Dots in Dual InGaN Quantum-Dot Layers[J]. Chin. Phys. Lett., 2011, 28(12): 116103
[5] ZHANG Jing-Xiang, LI Hui, ZHANG Xue-Qing, LIEW Kim-Meow. Electric Conductivity of Phosphorus Nanowires[J]. Chin. Phys. Lett., 2009, 26(5): 116103
[6] CHEN Wei-Hua, HU Xiao-Dong, SHAN Xu-Dong, KANG Xiang-Ning, ZHOU Xu-Rong, ZHANG Xiao-Min, YU Tong-Jun, YANG Zhi-Jian, YOU Li-Ping, XUKe, ZHANG Guo-Yi. Shock-Assisted Superficial Hexagonal-to-Cubic Phase Transition in GaN/Sapphire Interface Induced by Using Ultra-violet Laser Lift-Off Techniques[J]. Chin. Phys. Lett., 2009, 26(1): 116103
[7] ZHANG Fu-Chun, , ZHANG Zhi-Yong, ZHANG Wei-Hu, , YAN Jun-Feng, YUN Jiang-Ni. First-Principles Study on Magnetic Properties of V-Doped ZnO Nanotubes[J]. Chin. Phys. Lett., 2009, 26(1): 116103
[8] PENG Bei, Horacio D. Espinosa. This paper has been withdrawn by the first author due to misconduct, see Chin. Phys. Lett. 26, 079901, 2009
In Situ Tests of Multiwalled Carbon Nanotubes with Strength Close to Theoretical Predictions
[J]. Chin. Phys. Lett., 2009, 26(1): 116103
[9] CHEN Yu-Li, LIU Bin, YIN Ya-Jun, HUANG Yong-Gang, HWUANG Keh-Chih. Nonlinear Deformation Processes and Damage Modes of Super Carbon Nanotubes with Armchair-Armchair Topology[J]. Chin. Phys. Lett., 2008, 25(7): 116103
[10] CAO Bing-Yang, HOU Quan-Wen. Thermal Conductivity of Carbon Nanotubes Embedded in Solids[J]. Chin. Phys. Lett., 2008, 25(4): 116103
[11] YUAN Peng-Fei, DING Ze-Jun, JU Xin. Theoretical Study on Structural and Elastic Properties of ZnO Nanotubes[J]. Chin. Phys. Lett., 2008, 25(3): 116103
[12] S. Eren San, Mustafa Okutan, Oguz Koysal, Yusuf Yerli. Carbon Nanoparticles in Nematic Liquid Crystals[J]. Chin. Phys. Lett., 2008, 25(1): 116103
[13] ZHANG Xue-Qing, LI Hui, LIEW Kim-Meow, LI Yun-Fang, SUN Feng-Wei. Helical Shell Structures of Ni--Al Alloy Nanowires and Their Electronic Transport Properties[J]. Chin. Phys. Lett., 2007, 24(6): 116103
[14] JI Dong, GAO Xiang, KONG Xiang-Yang, LI Jia-Ming,. Atomistic Failure Mechanism of Single Wall Carbon Nanotubes with Small Diameters[J]. Chin. Phys. Lett., 2007, 24(1): 116103
[15] ZHENG Li-Ping., XU Zi-Jian, WANG Cheng-Bin, ZHU Zhi-Yuan, ZHU De-Zhang, XIA Hui-Hao. Low Energy Ion Channelling in Single-Wall Nanotubes[J]. Chin. Phys. Lett., 2006, 23(8): 116103
Viewed
Full text


Abstract