Chin. Phys. Lett.  2009, Vol. 26 Issue (11): 110202    DOI: 10.1088/0256-307X/26/11/110202
GENERAL |
A New Type of Conserved Quantity of Mei Symmetry for Holonomic Mechanical System
FANG Jian-Hui, ZHANG Ming-Jiang, LU Kai
College of Physics Science and Technology, China University of Petroleum, Dongying 257061
Cite this article:   
FANG Jian-Hui, ZHANG Ming-Jiang, LU Kai 2009 Chin. Phys. Lett. 26 110202
Download: PDF(264KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new type of conserved quantity which is directly induced by the Mei symmetry of the holonomic system is studied. Firstly, the definition and criterion of the Mei symmetry for a holonomic mechanical system is given. Secondly, the condition of existence of the new conserved quantity as well as its form is obtained. Lastly, an example is given to illustrate the application of the results.
Keywords: 02.20.Sv      11.30.-j      45.05.+x     
Received: 20 August 2009      Published: 30 October 2009
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  11.30.-j (Symmetry and conservation laws)  
  45.05.+x (General theory of classical mechanics of discrete systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/11/110202       OR      https://cpl.iphy.ac.cn/Y2009/V26/I11/110202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FANG Jian-Hui
ZHANG Ming-Jiang
LU Kai
[1] Noether A E 1918 Nachr. Akad. Wiss. Gottingen Math.Phys. KI II235
[2] Mei F X 2004 Symmetries and Conserved Quantities ofConstrained Mechanical Systems (Beijing: Beijing Institute ofTechnology) (in Chinese)
[3] Lutzky M 1979 J. Phys. A: Math Gen. 12 973
[4] Mei F X 2001 Chin. Phys . 10 177
[5] Fang J H 2003 Commun. Theor. Phys. 40 269
[6] Luo S K 2003 Acta Phys. Sin. 52 2941 (inChinese)
[7] Guo Y X, Jiang L Y and Yu Y 2001 Chin. Phys. 10 181
[8] Wang S Y and Mei F X 2002 Chin. Phys. 11 5
[9] Mei F X, Xu X J and Zhang Y F 2004 Acta. Mech. Sin. 20 668
[10] Wu H B 2004 Chin. Phys. 13 589
[11] Zhang H B and Chen L Q 2005 J. Phys. Soc. Jpn. 74 905
[12] Chen X W, Li Y M and Zhao Y H 2005 Phys. Lett. A 337 274
[13] Xu X J, Qin M C and Mei F X 2005 Chin. Phys. 14 1287
[14] Zhang Y 2005 Acta Phys. Sin. 54 2980 (inChinese)
[15] Fu J L, Chen L Q, Jimenez S and Tang Y F 2006 Phys.Lett. A 358 5
[16] Fang J H, Ding N and Wang P 2007 Acta Phys. Sin. 56 3039 (in Chinese)
[17] Jia L Q, Zhang Y Y and Luo S K 2007 Chin. Phys. 16 3168
[18] Lou Z M 2007 Acta Phys. Sin. 56 2475 (inChinese)
[19] Zheng S W, Xie J F and Chen W C 2008 Chin. Phys.Lett. 25 809
[20] Shi S Y, Fu J L, Huang X H, Chen L Q and Zhang X B 2008 Chin. Phys. B 17 754
[21] Huang X H, Zhang X B and Shi S Y 2008 Acta Phys.Sin. 57 6056 (in Chinese)
[22] Cai J L and Mei F X 2008 Acta Phys. Sin. 575369 (in Chinese)
Related articles from Frontiers Journals
[1] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 110202
[2] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 110202
[3] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 110202
[4] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 110202
[5] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 110202
[6] JIANG Zhi-Wei . A New Model for Quark Mass Matrix[J]. Chin. Phys. Lett., 2011, 28(6): 110202
[7] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 110202
[8] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 110202
[9] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 110202
[10] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 110202
[11] WANG Hong**, TIAN Ying-Hui, CHEN Han-Lin . Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 110202
[12] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 110202
[13] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 110202
[14] K. Fakhar**, A. H. Kara. An Analysis of the Invariance and Conservation Laws of Some Classes of Nonlinear Ostrovsky Equations and Related Systems[J]. Chin. Phys. Lett., 2011, 28(1): 110202
[15] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 110202
Viewed
Full text


Abstract