Original Articles |
|
|
|
|
Quasi-Normal Modes of Gravitational Perturbation around a Reissner-Nordström Black Hole Surrounded by Quintessence |
Mahamat Saleh1, Bouetou Bouetou Thomas1,2,3, Timoleon Crepin Kofane1,3 |
1Department of Physics, Faculty of Science, University of Yaounde I, PO Box 812, Cameroon2Ecole Nationale Supérieure Polytechnique, University of Yaounde I, PO Box 8390, Cameroon3The Abdus Salam International Centre for Theoretical Physics, PO Box 586, Strada Costiera, II-34014, Trieste, Italy |
|
Cite this article: |
Mahamat Saleh, Bouetou Bouetou Thomas, Timoleon Crepin Kofane 2009 Chin. Phys. Lett. 26 109802 |
|
|
Abstract We investigate quasi-normal (QN) modes of gravitational perturbation around a Reissner-Nordström black hole surrounded by quintessence. The third-order Wentzel-Kramers-Brillouin approximation is used to evaluate QN frequencies. The behavior of the gravitational perturbation is plotted for some frequencies. Due to the presence of quintessence, QN modes of the Reissner-Nordström black hole damp at a slower rate.
|
Keywords:
98.80.Hw
95.30.Sf
|
|
Received: 13 March 2009
Published: 27 September 2009
|
|
|
|
|
|
[1] Cardoso V, Konoplya R and Jos\'e P S L arXiv:gr-qc/0305037 [2] Yu Zhang and Gui Y X 2006 Class. Quant. Grav. 23 6141 [3] Vishveshwara C V 1970 Nature 227 936 [4] Nollert H P 1999 Class. Quant. Grav. 16 R159 [5] Kokkotas K D and Bernd G S arXiv: gr-qc/9909058 [6] Konoplya R A 2003 Phys. Rev. D 68 024018 [7] Chandrasekhar S 1983 The Mathematical Theory of BlackHoles (Oxford: Clarendon) chap 3 p 85 [8] Miller S C, and Good R H 1953 Phys. Rev. 91174 [9] Luis F B and Abel C arXiv: quant-ph/0702213 [10] Abdallah E, Konoplya R A and Zhidenko A arXiv:hep-th/0702489 [11] Songbai C, Bin W and Rukeng S arXiv: gr-qc/0701089 [12] Iyer S 1987 Phys. Rev. D 35 3632 [13] Kokkotas K D and Schutz B F 1988 Phys. Rev. D 37 3378 [14] Seidel E and Iyer S 1990 Phys. Rev. D 41 374 [15] Kokkotas K D 1993 Nuovo Cimento B 108 991 [16] Rolando C, Tame G, Yoelsy L, Osmel M and Israel Q arXiv:astro-ph/0206315 [17] Kiselev V V 2003 Class. Quant. Grav. 20 1187 [18] Martin K and Domenico S arXiv: astro-ph/0609040 [19] Guo Z, Piao Y, Zhang X and Zhang Y arXiv: astro-ph/0410654 [20] Xia J, Feng B and Zhang X arXiv: astro-ph/0411501 [21] Wei Y H 2008 Chin. Phys. Lett. 25 2782 [22] Konoplya R A arXiv: gr-qc/0207028 [23] Regge T and Wheeler J A 1957 Phys. Rev. 1081063 [24] Zerilli F J 1970 Phys. Rev. Lett. 24 737 [25] Einsenhart L P 1926 Riemannian Geometry (Princeton:Princeton University) chap 4 [26] Schutz B F and Will C M 1985 Astrophys. J. 291 L33 [27] Iyer S and Will C M 1987 Phys. Rev. D 35 3621 [28] Zhang Y et al 2007 Gen.Relativ. Gravit. 39 1003 [29] Yi Y and Li F 2007 Chin. Phys. Lett. 24 2444 [30] Raj B and Seema T 2008 Chin. Phys. Lett. 253090 [31] Raj B and Seema T 2009 Chin. Phys. Lett. 26029802 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|