Chin. Phys. Lett.  2009, Vol. 26 Issue (10): 107301    DOI: 10.1088/0256-307X/26/10/107301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Cu Doping Effect on Electrical Resistivity and Seebeck Coefficient of Perovskite-Type LaFeO3 Ceramics
WANG Hong-Chao, WANG Chun-Lei, ZHANG Jia-Liang, ZHAO Ming-Lei, LIU Jian, SU Wen-Bin, YIN Na, MEI Liang-Mo
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100
Cite this article:   
WANG Hong-Chao, WANG Chun-Lei, ZHANG Jia-Liang et al  2009 Chin. Phys. Lett. 26 107301
Download: PDF(418KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Perovskite-type LaFe1-xCuxO3 (x=0.10$, 0.14, 0.18) solid solution is prepared with the conventional solid-state reaction technique. The electrical resistivity and the Seebeck coefficient are measured in the temperature range 473-1073K to elucidate the Cu doping effect on the thermoelectric properties of the LaFeO3. The electrical resisitivity of LaFe1-xCuxO3 shows semiconducting behavior. The temperature dependence of the electrical resistivity indicates that the adiabatic small-polaron hopping mechanism is dominant for their electric transportations. The activation energy decreases with the increasing Cu content as well as the increasing temperature. The Seebeck coefficient changes from a negative value to a positive value around 510K, and increases with rising temperature up to 710K, then becomes saturated around 200μV/K. The Seebeck coefficient decreases with the substitution of Cu atoms in the temperature range of 573-1073K, while the electrical resistivity decreases with the substitution of Cu atoms in the whole measured temperature. Overall the power factor increases with rising temperature, and the highest value of power factor is 54μW/K2m for x=0.10 of Cu doping.
Keywords: 73.61.Le      72.20.Pa      72.15.Jf     
Received: 07 April 2009      Published: 27 September 2009
PACS:  73.61.Le (Other inorganic semiconductors)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/10/107301       OR      https://cpl.iphy.ac.cn/Y2009/V26/I10/107301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Hong-Chao
WANG Chun-Lei
ZHANG Jia-Liang
ZHAO Ming-Lei
LIU Jian
SU Wen-Bin
YIN Na
MEI Liang-Mo
[1] Xu Y D, Xu G Y, Liu Y H and Ge C C 2008 Chin. Phys.Lett. 25 2664
[2] Zhu P W, Imai Y, Isoda Y, Shinohara Y, Jia X P and Zou G T2005 Chin. Phys. Lett. 22 2103
[3] Terasaki I, Sasago Y and Uchinokura K 1997 Phys.Rev. B 56 R12685
[4] Okuda T et al 2001 Phys. Rev. B 63 113104
[5] Robert R et al 2006 J. Solid State Chem. 1793893
[6] Yasukawa M and Kono T 2008 Solid State Commun. 146 458
[7] Hung M H, Madhava Rao M V and Tsai D S 2007 Mater.Chem. Phys. 101 297
[8] Mizusaki J et al 1987 J. Solid State Chem. 671
[9] Giannakas A E, Ladavos A K and Pomonis P 2004 J.Appl. Catal. B 49 147
[10] Iwasaki K 2006 J. Alloys Compd. 430 297
[11] Vecherskii S I 2004 Phys. Solid State 46 1433
[12] Tai LW 1995 Solid State Ionic. 76 117
[13] Park C Y and Jacohson A J 2005 J. Electrochem. Soc. 152 165
[14] Zhou X D et al 2006 J. Electrochem. Soc. 153J133
[15] Mott N F and Davis E A 1971 Electrical Process inNon-Crystal-line Materials (Oxford: Oxford University)
[16] Weber W J, Griffin C W and Bates J L 1987 J. Am.Ceram. Soc. 70 265
[17] Jung W H and Iguchi E 1998 J. Phys. D: Appl. Phys. 31 794
[18] Mizusaki J 1982 J. Am. Ceram. Soc. 66 363
[19] Kittel C 2001 Introduction to Solid State Physics(Singapore: Wiley)
Related articles from Frontiers Journals
[1] CHEN Liang**, ZHANG Wan-Rong, XIE Hong-Yun, JIN Dong-Yue, DING Chun-Bao, FU Qiang, WANG Ren-Qing, XIAO Ying, ZHAO Xin . Restabilizing Mechanisms after the Onset of Thermal Instability in Bipolar Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 107301
[2] REN Guo-Zhong, LIU Yang, MA Hong-An, SU Tai-Chao, LIN Le-Jing, DENG Le, JIANG Yi-Ping, ZHENG Shi-Zhao, JIA Xiao-Peng** . Thermoelectric Properties of Te-Doped Ba0.32Co4Sb12−xTexPrepared at HPHT[J]. Chin. Phys. Lett., 2011, 28(4): 107301
[3] KONG Fang-Fang, LIU Cong-Cong, XU Jing-Kun**, JIANG Feng-Xing, LU Bao-Yang, YUE Rui-Rui, LIU Guo-Dong, WANG Jian-Min . Simultaneous Enhancement of Electrical Conductivity and Seebeck Coefficient of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Films Treated with Urea[J]. Chin. Phys. Lett., 2011, 28(3): 107301
[4] JIANG Yi-Ping, JIA Xiao-Peng, GUO Wei, XU Hui-Wen, DENG Le, ZHENG Shi-Zhao, MA Hong-An. Elevation of the Power Factor of Co4Sb12 Skutterudite with Sm-Doping in High-Pressure High-Temperature Synthesis[J]. Chin. Phys. Lett., 2010, 27(6): 107301
[5] LU Bao-Yang, LIU Cong-Cong, LU Shan, XU Jing-Kun, JIANG Feng-Xing, LI Yu-Zhen, ZHANG Zhuo. Thermoelectric Performances of Free-Standing Polythiophene and Poly(3-Methylthiophene) Nanofilms[J]. Chin. Phys. Lett., 2010, 27(5): 107301
[6] LIU Wen-Ting, LIU Zheng-Tang, TAN Ting-Ting, YAN Feng. Influence of Radio-Frequecy Power on Structural and Electrical Properties of Sputtered Hafnium Dioxide Thin Films[J]. Chin. Phys. Lett., 2010, 27(2): 107301
[7] ZHANG Li-Li, HU Chun-Lian, WANG Can, LÜ, Hui-Bin, HAN Peng, YANG Guo-Zhen, JIN Kui-Juan. Competition between Radiative Power and Dissipation Power in the Refrigeration Process in Oxide Multifilms[J]. Chin. Phys. Lett., 2010, 27(2): 107301
[8] JIANG Feng-Xing, XU Jing-Kun, LU Bao-Yang, XIE Yu, HUANG Rong-Jin, LI Lai-Feng. Thermoelectric Performance of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)[J]. Chin. Phys. Lett., 2008, 25(6): 107301
[9] M. Cankurtaran, H. Celik. Comment on `Electronic Properties of Red P-Type Tl2S5 Single Crystals'[J]. Chin. Phys. Lett., 2007, 24(6): 107301
[10] QIAO Yan-Bin, ZHONG Guo-Hua, LI Di, WANG Jiang-Long, QIN Xiao-Ying, ZENG Zhi. Strongly Correlated Effect in TiS2[J]. Chin. Phys. Lett., 2007, 24(4): 107301
[11] WU Yi-Dong, WANG Zhi-Min, HE Yuan-Jin. A New Method for Calculating the Thermoelectric Efficiency[J]. Chin. Phys. Lett., 2004, 21(9): 107301
[12] LI Qiu-Hong, WANG Tai-Hong. Improved Electric Transport Properties of a Multi-wall Carbon Nanotube[J]. Chin. Phys. Lett., 2003, 20(8): 107301
[13] YAN Lei, LÜ, Hui-Bin, CHEN Zheng-Hao, DAI Shou-Yu, TAN Guo-Tai, YANG Guo-Zhen. Highly Conductive Nb-Doped BaTiO3 Epitaxial Thin Films Grown by Laser Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2001, 18(11): 107301
[14] ZHOU Sheng-Ming, DONG Qiu-Zhao, ZHOU Gui-En, ZHANG Yu-Heng . Sign Change of Thermopower at Low Temperatures in Nd0.7 ( Ca,Sr,Ba)0.3 MnO3[J]. Chin. Phys. Lett., 2000, 17(1): 107301
Viewed
Full text


Abstract