Chin. Phys. Lett.  2009, Vol. 26 Issue (10): 104201    DOI: 10.1088/0256-307X/26/10/104201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Schemes for Generating Cluster States via Cavity Systems
DU Gang, LAI Bo-Hui, YU Ya-Fei, ZHANG Zhi-Ming
Laboratory of Photonic Information Technology, LQIT and SIPSE, South China Normal University, Guangzhou 510006
Cite this article:   
DU Gang, LAI Bo-Hui, YU Ya-Fei et al  2009 Chin. Phys. Lett. 26 104201
Download: PDF(222KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a scheme for generating an N-atom cluster state via cavity quantum electrodynamics (CQED). In our scheme, there is no transfer of quantum information between the atoms and the cavity, i.e., the cavity is always in the vacuum state, so the cavity decay can be suppressed. Also, the generated cluster state is the entanglement of the ground states, so the atomic spontaneous emission can be avoided. Therefore, the cluster state generated in our scheme has a longer lifetime. Furthermore, the requirement on the quality factor of the cavity greatly loosened for the cavity is only virtually excited.
Keywords: 42.50.Ct      42.50.Pq      03.67.Mn     
Received: 07 April 2009      Published: 27 September 2009
PACS:  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/10/104201       OR      https://cpl.iphy.ac.cn/Y2009/V26/I10/104201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DU Gang
LAI Bo-Hui
YU Ya-Fei
ZHANG Zhi-Ming
[1] Enstein A et al 1935 Phys. Rev. 47 777
[2] Bennett C H et al 1993 Phys. Rev. Lett. 701895
[3] Deutsch D and Jozsa R 1992 Proc. R. Soc. London A 439 533
[4] Benntt C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[5] Hao J C et al 2001 Phys. Rev. A 63 054301
[6] Vincenzo D P et al 1998 Phys. Rev. A 57 2368
[7] Zhang C W et al 2000 Phys. Rev. A 62 042302
[8] Zhou Y L et al 2009 Chin. Phys. Lett. 26060301
[9] Guo Y Q et al 2008 Chin. Phys. Lett. 25 2362
[10] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[11] Zheng S B 2001 Phys. Rev. Lett. 87 230404
[12] Zhou D L et al 2003 Phys. Rev. A 68 062303
[13] Raussendorf R et al 2003 Phys. Rev. A 68022312
[14] Nielsen M A 2004 Phys. Rev. Lett. 93 040503
[15] Nielsen M A and Dawson C M 2005 Phys. Rev. A 71 042323
[16] Zou X B et al 2004 Phys. Rev. A 69 052314
[17] Zou X B and Mathis W 2005 Phys. Rev. A 71032308
[18] Zou X B and Mathis W 2005 Phys. Rev. A 72013809
[19] Zheng S B 2006 Phys. Rev. A 73 065802
[20] Zheng H Y et al 2008 Chin. Phys. Lett. 25836
[21] Cao Z L et al 2006 Phys. Rev. A 73 033818
[22] Huang X H et al 2008 Chin. Phys. B 17 4382
[23] Gerry G and Knight P 2005 Introductory QuantumOptics (Cambridge: Cambridge University)
Related articles from Frontiers Journals
[1] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 104201
[2] CHENG Mu-Tian,SONG Yan-Yan,YU Long-Bao**. Transmission Characteristics in a Coupled-Resonator Waveguide Interacting with a Two-Mode Nanocavity Containing a Three-Level Emitter[J]. Chin. Phys. Lett., 2012, 29(5): 104201
[3] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 104201
[4] TIAN Wei, CHEN Bin, XU Wei-Dong. Controlling Single-Photon Transport along an Optical Waveguide by using a Three-Level Atom[J]. Chin. Phys. Lett., 2012, 29(3): 104201
[5] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 104201
[6] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 104201
[7] WANG Xu-Cheng, CHENG Hua-Dong, XIAO Ling, ZHENG Ben-Chang, MENG Yan-Ling, LIU Liang, WANG Yu-Zhu. Measurement of Spatial Distribution of Cold Atoms in an Integrating Sphere[J]. Chin. Phys. Lett., 2012, 29(2): 104201
[8] S. P. Toh**, Hishamuddin Zainuddin, Kim Eng Foo,. Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity[J]. Chin. Phys. Lett., 2012, 29(1): 104201
[9] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 104201
[10] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 104201
[11] LI Jun-Wang, WU Chun-Wang, DAI Hong-Yi** . Quantum Information Transfer in Circuit QED with Landau–Zener Tunneling[J]. Chin. Phys. Lett., 2011, 28(9): 104201
[12] SUN Ke-Wei**, CHEN Qing-Hu . Ground-State Behavior of the Quantum Compass Model in an External Field[J]. Chin. Phys. Lett., 2011, 28(9): 104201
[13] LIU Zhi-Qiang, LIANG Xian-Ting** . Non-Markovian and Non-Perturbative Entanglement Dynamics of Biomolecular Excitons[J]. Chin. Phys. Lett., 2011, 28(8): 104201
[14] ZHENG An-Shou, **, LIU Ji-Bing, CHEN Hong-Yun . N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage[J]. Chin. Phys. Lett., 2011, 28(8): 104201
[15] XU Qing, HU Xiang-Ming** . Nonadiabatic Effects of Atomic Coherence on Laser Intensity Fluctuations in Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2011, 28(7): 104201
Viewed
Full text


Abstract