Chin. Phys. Lett.  2009, Vol. 26 Issue (10): 100503    DOI: 10.1088/0256-307X/26/10/100503
GENERAL |
Tracking Desired Trajectory in a Vibro-Impact System Using Backstepping Design
WANG Liang1, XU Wei1, ZHAO Rui2, SUN Chun-Yan1, GUO Yong-Feng1
1Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 7100722Department of Mathematics, Shangluo University, Shangzhou 726000
Cite this article:   
WANG Liang, XU Wei, ZHAO Rui et al  2009 Chin. Phys. Lett. 26 100503
Download: PDF(422KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the backstepping design of smooth systems, we developed a new control law to achieve chaos control for a vibro-impact system. In our control strategy, a novel and effective controller is designed such that the output of the vibro-impact system can track any desired trajectory in its domain. The single-degree-of-freedom vibro-impact system is taken as an example to show this control procedure. Numerical simulations are provided to verify the effectiveness of the proposed method.
Keywords: 05.45.Gg     
Received: 26 March 2009      Published: 27 September 2009
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/10/100503       OR      https://cpl.iphy.ac.cn/Y2009/V26/I10/100503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Liang
XU Wei
ZHAO Rui
SUN Chun-Yan
GUO Yong-Feng
[1] Chin W et al 1994 Phys. Rev. E 50 4427
[2] Weger J D et al 1996 Phys. Rev. Lett. 76 3951
[3] Nordmark A B 1997 Phys. Rev. E 55 266
[4] Barbara B O and Tomasz K 1998 Chaos SolitonsFractals 9 1439
[5] Luo G W 2004 Phys. Lett. A 323 210
[6] Luo G W et al. 2006 J. Sound Vib. 298 154
[7] Souza S L T D et al 2007 Chaos Solitons Fractals 32 745
[8] Souza S L T D et al 2004 Chaos Solitons Fractals 19 171
[9] Wang L et al 2008 Phys. Lett. A 372 5309
[10] Wang L et al 2008 Chin. Phys. B 17 2446
[11] Ott E et al 1990 Phys. Rev. Lett. 64 1196
[12] Zhu C X and Chen Z G 2008 Phys. Lett. A 3724033
[13] Matias M A and Guemez J 1994 Phys. Rev. Lett. 72 1455
[14] Yang T et al 1997 Physica D 110 18
[15] Yang T et al 1997 Phys. Lett. A 232 356
[16] Zhong Q S et al 2008 Chin. Phys. Lett. 252812
[17] L\"{u J H and Zhang S C 2001 Phys. Lett. A 286 148
[18] Yassen M T 2006 Chaos Solitons Fractals 27537
[19] Liu N and Guan Z H 2009 Chin. Phys. Lett. 26070503
[20] Lu W G et al 2007 Chin. Phys. Lett. 24 1837
Related articles from Frontiers Journals
[1] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 100503
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 100503
[3] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 100503
[4] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 100503
[5] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 100503
[6] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 100503
[7] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 100503
[8] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 100503
[9] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 100503
[10] LI Hai-Yan**, HU Yun-An . Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(12): 100503
[11] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 100503
[12] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 100503
[13] DU Mao-Kang**, HE Bo, WANG Yong . Security Analysis of a Block Encryption Algorithm Based on Dynamic Sequences of Multiple Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(1): 100503
[14] XU Jie, LONG Ke-Ping, FOURNIER-PRUNARET Danièle, TAHA Abdel-Kaddous, CHARGE Pascal. Chaotic Dynamics in a Sine Square Map: High-Dimensional Case (N≥3)[J]. Chin. Phys. Lett., 2010, 27(8): 100503
[15] LU Xiao-Qing, Francis Austin, CHEN Shi-Hua. Cluster Consensus of Nonlinearly Coupled Multi-Agent Systems in Directed Graphs[J]. Chin. Phys. Lett., 2010, 27(5): 100503
Viewed
Full text


Abstract