Chin. Phys. Lett.  2009, Vol. 26 Issue (10): 100307    DOI: 10.1088/0256-307X/26/10/100307
GENERAL |
General Theory of Decoy-State Quantum Cryptography with Dark Count Rate Fluctuation
GAO Xiang, SUN Shi-Hai, LIANG Lin-Mei
Department of Physics, National University of Defense Technology, Changsha 410073
Cite this article:   
GAO Xiang, SUN Shi-Hai, LIANG Lin-Mei 2009 Chin. Phys. Lett. 26 100307
Download: PDF(237KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The existing theory of decoy-state quantum cryptography assumes that the dark count rate is a constant, but in practice there exists fluctuation. We develop a new scheme of the decoy state, achieve a more practical key generation rate in the presence of fluctuation of the dark count rate, and compare the result with the result of the decoy-state without fluctuation. It is found that the key generation rate and maximal secure distance will be decreased under the influence of the fluctuation of the dark count rate.
Keywords: 03.67.Dd      03.67.Hk     
Received: 30 March 2009      Published: 27 September 2009
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/10/100307       OR      https://cpl.iphy.ac.cn/Y2009/V26/I10/100307
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Xiang
SUN Shi-Hai
LIANG Lin-Mei
[1] Brub D 1998 Phys. Rev. Lett. 81 3018
[2] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev.Mod. Phys. 74 145
[3] Dusek M, L\"{utkenhaus N and Hendrych M 2006 Progress in Optics ed Wolf E (New York: Elsevier) vol 6 p 381
[4] Inamori H, L\"{utkenhaus N and Mayers D 2007 Eur.Phys. J. D 41 599
[5] Huttner B, Gisin N, Mor T and Imoto N 1995 Phys.Rev. A 51 1863
[6] Lutkenhaus N and Jahma M 2002 New J. Phys. 444
[7] Brassard G, Lutkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330
[8] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[9] Wang X B, Hiroshima T, Tomita A and Hayashi M 2007 Phys. Rep. 1 448
[10] Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[11] Scarani V, Acin A, Ribordy G and Gisin N 2004 Phys.Rev. Lett. 92 057901
[12] Koashi M 2004 Phys. Rev. Lett. 93 120501
[13] Gottesman D, Lo H K, Lutkenhaus N and Preskill J 2004 Quantum Inform. Comput. 4 325
[14] Bennett C H and Brassard G 1984 Proceedings of theIEEE International Conference on Computers, Systems and SignalProcessing (New York: IEEE) p 175
[15] Zhao Y, Qi B, Ma X F, Lo H K and Qian L 2006 Phys.Rev. Lett. 96 070502
[16] Tobias S M, Weier H, Furst M, Ursin R, Tiefenbacher F,Scheidl T, Perdigues J, Sodnik Z, Kurtsiefer C, Rarity J G,Zeilinger A and Weinfurter H 2007 Phys. Rev. Lett. 98010504
[17] Peng C Z, Zhang J, Yang D, Gao W B, Ma H X, Yin H, Zeng HP, Yang T, Wang X B and Pan J W 2007 Phys. Rev. Lett. 98010505
[18] Rosenberg D, Harrington J W, Rice P R, Hiskett P A,Peterson C G, Hughes R J, Lita A E, Nam S W and Nordholt J E 2007 Phys. Rev. Lett. 98 010503
[19] Wang X B 2005 Phys. Rev. Lett. 94 230503
[20] Wang X B 2007 Phys. Rev. A 75 052301
[21] Wang X B, Peng C Z, Zhang J, Yang L and Pan J W 2008 Phys. Rev. A 77 042311
[22] Ma X F, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[23] Gobby C, Yuan Z L and Shuelds A J 2004 Appl. Phys.Lett. 84 3762
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 100307
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 100307
[3] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 100307
[4] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 100307
[5] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 100307
[6] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 100307
[7] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 100307
[8] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 100307
[9] WANG Mei-Yu, YAN Feng-Li** . Perfect Entanglement Teleportation via Two Parallel W State Channels[J]. Chin. Phys. Lett., 2011, 28(6): 100307
[10] SHI Run-Hua, **, HUANG Liu-Sheng, YANG Wei, ZHONG Hong . A Novel Multiparty Quantum Secret Sharing Scheme of Secure Direct Communication Based on Bell States and Bell Measurements[J]. Chin. Phys. Lett., 2011, 28(5): 100307
[11] SU Xiao-Qiang** . Entanglement Enhancement in an XY Spin Chain[J]. Chin. Phys. Lett., 2011, 28(5): 100307
[12] LI Hong-Rong**, LI Fu-Li, ZHU Shi-Yao . Quantum Nonlocally Correlated Observables for Non-Gaussian States[J]. Chin. Phys. Lett., 2011, 28(5): 100307
[13] HAN Jia-Jia, SUN Shi-Hai, LIANG Lin-Mei** . A Three-Node QKD Network Based on a Two-Way QKD System[J]. Chin. Phys. Lett., 2011, 28(4): 100307
[14] WANG Tie-Jun, , LI Tao, DU Fang-Fang, DENG Fu-Guo** . High-Capacity Quantum Secure Direct Communication Based on Quantum Hyperdense Coding with Hyperentanglement[J]. Chin. Phys. Lett., 2011, 28(4): 100307
[15] LIN Song, **, GAO Fei, LIU Xiao-Fen, . Quantum Secure Direct Communication with Five-Qubit Entangled State[J]. Chin. Phys. Lett., 2011, 28(3): 100307
Viewed
Full text


Abstract