Chin. Phys. Lett.  2009, Vol. 26 Issue (10): 100302    DOI: 10.1088/0256-307X/26/10/100302
GENERAL |
Approximate Solutions of the Schrödinger Equation for the Eckart Potential and Its Parity-Time-Symmetric Version Including Centrifugal Term
ZHANG Ai-Ping, QIANG Wen-Chao, LING Ya-Wen
Faculty of Science, Xi'an University of Architecture and Technology, Xi'an 710055
Cite this article:   
ZHANG Ai-Ping, QIANG Wen-Chao, LING Ya-Wen 2009 Chin. Phys. Lett. 26 100302
Download: PDF(254KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The energy eigenvalues and eigenfunctions of the Schrödinger equation for Eckart potential as well as the parity-time-symmetric version of the potential in three dimensions with the centrifugal term are investigated approximately by using the Nikiforov-Uvarov method. To show the accuracy of our results, we calculate the energy eigenvalues for various values of n and l. It is found that the results are in good agreement with the numerical solutions for short-range potential (large a). For the case of 1/a i/a, the potential is also studied briefly.
Keywords: 03.65.Ge      03.65.-w     
Received: 03 June 2009      Published: 27 September 2009
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.-w (Quantum mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/10/100302       OR      https://cpl.iphy.ac.cn/Y2009/V26/I10/100302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Ai-Ping
QIANG Wen-Chao
LING Ya-Wen
[1] Comtet A et al 1985 Phys. Lett. B 150 159 Filho E D and Ricotta R M 2000 Phys. Lett. A 269269 Liang Z et al 2005 Chin. Phys. Lett. 22 2465
[2] Schiff L I 1955 Quantum Mechanics 3rd edn (New York:McGraw-Hill)
[3] Landau L D and Lifshitz E M 1977 Quantum Mechanics(Non-Relativistic Theory) 3rd edn (Oxford: Pergamon)
[4] Greene R L, Aldrich C 1976 Phys. Rev. A 142363
[5] Bayrak O et al 2006 J. Phys. A: Math. Gen. 3911521 G\"{on\"{ul.B et al 2000 Phys. Lett. A 275 238
[6] Dong S H and Garc\'{\ia-Ravelo J 2007 PhysicaScripta 75 307 Diaf A et al 2005 Ann. Phys. 317 354
[7] Qiang W C et al 2009 Physica Scripta 79 065011
[8] Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243 Bender C M et al 1999 J. Math. Phys. 40 2201 Bender C M et al 2000 J. Math. Phys. 41 6381 Bender C M, Weniger E J 2001 J. Math. Phys. 422167 Bender C M et al 2002 Phys. Lett. A 302 286
[9] Jia C S, Sun Y and Li Y 2002 Phys. Lett. A 305231 L\'{evai G 2008 Phys. Lett. A 372 6484 Soylu A et al 2008 Chin. Phys. Lett. 25 2754 L\'{evai G 2006 J. Phys. A 39 10161
[10]L\'{evai G 2007 J. Phys. A 40 F273
[11]Eckart C 1930 Phys. Rev 35 1303 Ol\u{gar E et al 2006 Chin. Phys. Lett. 23 539
[12] Nikiforov A F and Uvarov V B 1988 Special Functionof Mathematical Physics (Basel: Birkhauser)
[13]Chen Y et al 1992 Acta Chim. Sin. 50 1163 (inChinese)
[14]Lucha W et al 1999 Int. J. Mod. Phys. C 10 607
[15]E\u{grifes H et al 1999 Physica Scripta 60195
[16]Solombrino L quant-ph/0203101
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 100302
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 100302
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 100302
[4] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 100302
[5] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 100302
[6] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 100302
[7] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 100302
[8] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 100302
[9] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 100302
[10] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 100302
[11] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 100302
[12] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 100302
[13] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 100302
[14] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 100302
[15] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 100302
Viewed
Full text


Abstract