Chin. Phys. Lett.  2009, Vol. 26 Issue (10): 100202    DOI: 10.1088/0256-307X/26/10/100202
GENERAL |
Quantum Correlation Coefficients for Angular Coherent States
CHEN Wei1, HE Yan2, GUO Hao3
1Department of Mathematics, Zhangzhou Normal University, Zhangzhou 3630002Department of Physics, Peking University, Beijing 1008713Department of Physics, Tsinghua University, Beijing 100084
Cite this article:   
CHEN Wei, HE Yan, GUO Hao 2009 Chin. Phys. Lett. 26 100202
Download: PDF(186KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum covariance and correlation coefficients of angular or SU(2) coherent states are directly calculated for all irreducible unitary representations. These results explicitly verify that the angular coherent states minimize the Robertson-Schrodinger uncertainty relation for all spins, which means that they are the so-called intelligent states. The same results can be obtained by the Schwinger representation approach.
Keywords: 02.20.Sv      03.65.Fd      42.50.Ar     
Received: 08 December 2008      Published: 27 September 2009
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  03.65.Fd (Algebraic methods)  
  42.50.Ar  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/10/100202       OR      https://cpl.iphy.ac.cn/Y2009/V26/I10/100202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Wei
HE Yan
GUO Hao
[1] Schrodinger E 1926 Naturwissenschaften 14664
[2] Glauber R J 1963 Phys. Rev. 130 2529 Glauber R J 1963 Phys Rev. 131 2766
[3] Perelomov A 1986 Generalized Coherent States andTheir Applications, Texts and Monographs in Physics (Berlin:Spinger)
[4] Zhang W, Feng D and Gilmore R 1990 Rev. Mod. Phys. 62 867
[5] Perelomov A M 1972 Commun. Math. Phys. 26 222
[6] Radcliffe J M 1971 J. Phys. A: Gen. Phys. 4313
[7] Arecchi F T, Courtens E, Gilmore R and Thomas H 1972 Phys. Rev. A 6 2211
[8] Robertson H B 1930 Phys. Rev. 35 667 Robertson H B 1934 Phys. Rev. 46 794
[9] Trifonov D A 1994 J. Math. Phys. 35 2297 Trifonov D A 1994 Phys. Lett. A 187 284
[10] Dodonov V, Man'ko O V and Man'ko V I 1994 Phys.Rev. A 50 813
[11] Nemoto K arXiv:quant-phy/0004087
[12] Daoud D arXiv:math-ph/0409045
Related articles from Frontiers Journals
[1] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 100202
[2] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 100202
[3] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 100202
[4] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 100202
[5] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 100202
[6] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 100202
[7] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 100202
[8] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 100202
[9] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 100202
[10] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 100202
[11] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 100202
[12] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 100202
[13] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 100202
[14] WANG Hong**, TIAN Ying-Hui, CHEN Han-Lin . Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 100202
[15] ZHA Xin-Wei**, MA Gang-Long . Classification of Four-Qubit States by Means of a Stochastic Local Operation and the Classical Communication Invariant[J]. Chin. Phys. Lett., 2011, 28(2): 100202
Viewed
Full text


Abstract