CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Structural and Thermodynamic Properties of Cerium via First-Principles Plane Wave Method with a Relativistic Analytic Pseudopotential |
SUN Li-Li1, JI Guang-Fu2, CHEN Xiang-Rong1,3, GOU Qing-Quan1 |
1School of Physical Science and Technology, Sichuan University, Chengdu 6100642Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 6219003International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016 |
|
Cite this article: |
SUN Li-Li, JI Guang-Fu, CHEN Xiang-Rong et al 2009 Chin. Phys. Lett. 26 017101 |
|
|
Abstract We investigate the structural and thermodynamic properties of cerium in α phase by using the first-principles plane wave method with a relativistic analytic pseudopotential of Hartwigsen, Goedcker and Hutter (HGH) scheme in the frame of local density approximation (LDA). The obtained lattice constant and bulk modulus are consistent with the available experimental data. Moreover, dependences of the normalized primitive volume V/V0 on pressure and the thermodynamic quantities (including the Grüneisen constant γ and thermal expansion α) on temperature and pressure are obtained. The obtained linear thermal expansion parameter α (9.857× 10-6K-1 at 293.15K and 0GPa) is slightly larger than the experimental value (6.3×10-6K-1). All the results indicate that we provide an effective method to deal with the ground properties of the strongly interacting d- and/or f-electron systems.
|
Keywords:
71.15.Mb
71.15.Dx
65.40.-b
71.20.Be
|
|
Received: 11 August 2008
Published: 24 December 2008
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.15.Dx
|
(Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction))
|
|
65.40.-b
|
(Thermal properties of crystalline solids)
|
|
71.20.Be
|
(Transition metals and alloys)
|
|
|
|
|
[1] Huang L and Chen C A 2007 J. Phys.: Condens. Matter 19 476206 [2] Gempel R F et al 1972 Phys. Rev. B 5 2082 [3] Wilkinson M K et al 1961 Phys. Rev. 122 1409 [4] MacPherson M R, Everett G. E, Wohlleben D and Maple M B1971 Phys. Rev. Lett. 26 20 [5] Wittig G 1968 Phys. Rev. Lett. 21 1250 [6] Gustafson D R et al 1969 Phys. Rev. 183 435 [7] Lawson A W and Tang T Y 1949 Phys. Rev 76 301 [8] Lawrence J M et al 1981 Rep. Prog. Phys 44 1 [9] Jeong I K et al 2004 Phys. Rev. Lett. 92105702 [10] Basu S and Riseborough P S 2006 Physica B 378--380 686 [11] Johansson B 1974 Phil. Mag. 30 469 [12] Allen J W and Martin R M 1982 Phys. Rev. Lett. 49 1106 [13] Allen J W and Liu L Z 1992 Phys. Rev. B 465047 [14] Oomi G 1980 J. Phys. Soc. Jpn. 49 256. [15] Hartwigsen C et al 1998 Phys. Rev. B 58 3641 [16] Blanco M A et al 2004 Comput. Phys. Commun. 158 57 [17] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [18] Chen X R et al 2005 Chin. Phys. Lett. 22 1504 [19] Chen X R et al 2006 Solid State Commun. 139246 [20] Zeng Z Y et al 2008 Chin. Phys. Lett. 25 1757 [21] Koskenmaki D C and Gschneidner K A 1978 Handbook ofPhysics and Chemistry of Rare Earths (Amsterdam: North-Holland)ch 4 [22] Zachariasen W H and Ellinger F H 1977 ActaCrystallogr. A 33 155 [23] Olsen J S et al 1985 Physica B+C 133 129 [24] Franceschi E and Olcese G L 1969 Phys. Rev. Lett. 22 1299 [25] Olsen J S et al 1993 Physica B 190 92 [26] Adams L H and Davis B L 1962 Proc. National Academyof Sciences, USA 48 983 [27] Richard N et al 2001 J. Alloys Compd. 323-324628 [28] Svane A 1996 Phys. Rev. B 53 4275 [29] Soderlind P et al 1995 Phys. Rev. B 51 4618 [30] http://www.webelements.com/cerium/physics.html |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|