Chin. Phys. Lett.  2009, Vol. 26 Issue (1): 014701    DOI: 10.1088/0256-307X/26/1/014701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Multimode Coupling Theory for Kelvin-Helmholtz Instability in Incompressible Fluid
WANG Li-Feng1,2, YE Wen-Hua1,3,4, FAN Zheng-Feng2, LI Ying-Jun1
1School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 1000832Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 1000883Department of Physics, Zhejiang University, Hangzhou 3100284Center for Applied Physics and Technology, Peking University, Beijing 100871
Cite this article:   
WANG Li-Feng, YE Wen-Hua, FAN Zheng-Feng et al  2009 Chin. Phys. Lett. 26 014701
Download: PDF(375KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A weakly nonlinear model is proposed for multimode Kelvin-Helmholtz instability. The second-order mode coupling formula for Kelvin-Helmholtz instability in two-dimensional incompressible fluid is presented by expanding the perturbation velocity potential to second order. It is found that there is an important resonance in the course of the sum frequency mode coupling but the difference frequency mode coupling does not have. This resonance makes the sum frequency mode coupling process relatively complex. The sum frequency mode coupling is strongly dependent on time especially when the density of the two fluids is adjacent and the difference frequency mode coupling is not.
Keywords: 47.20.Ft      52.35.Py      47.35.Lf     
Received: 04 September 2008      Published: 24 December 2008
PACS:  47.20.Ft (Instability of shear flows (e.g., Kelvin-Helmholtz))  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
  47.35.Lf (Wave-structure interactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/1/014701       OR      https://cpl.iphy.ac.cn/Y2009/V26/I1/014701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Li-Feng
YE Wen-Hua
FAN Zheng-Feng
LI Ying-Jun
[1] Chandrasekhar S 1961 Hydrodynamic and HydromagneticStability (London: Oxford University Press) chap 10
[2] Hasegawa1 H et al 2004 Nature 430 755
[3] Lobanov A P and Zensus J A 2001 Science 294128
[4] Gamexo V N et al 2003 Science 299 77
[5] Price D J and Rosswog S 2006 Science 312 719
[6] Ye W H et al 2002 Phys. Rev. E 65 57401
[7] Ye W H et al 2000 Acta Phys. Sin. 49 762 (inChinese)
[8] Fan Z F et al 2007 Chin. Phys. Lett. 24 2308
[9] Fan Z F and Luo J S 2008 Chin. Phys. Lett. 25624
[10] Ferrari A et al 1978 Astron. Astrophys. 64 43
[11] Payne D G and Cohn H 1985 Astrophys. J. 291655
[12] Nayffh A H and Saric W S1970 J. Fluid Mech. 46 209
[13] Walker J S 1993 Phys. Fluids A 5 1466
[14] Bau H H 1982 Phys. Fluids 25 1719
[15] Tauber W et al 2002 Phys. Fluids 14 2871
[16] Keskinen M J 1995 Phys. Plasmas 3 1259
[17] Drazin P G 1969 J. Fluid Mech. 42 321
[18] Bodo G 2004 Phys. Rev. E 70 36304
[19] Miura A 1999 Phys. Rev. Lett 83 1586
[20] Horton W et al 2005 Phys. Plasmas 12 22303
[21] Lawrence G A et al 1991 Phys. Fluids A 3 2360
[22] Wang L F et al 2008 Acta Phys. Sin. 57 3038(in Chinese)
[23] Wang L F et al 2008 Chin Phys. B 17 3792
[24] Haan S W 1991 Phys. Fluids B 3 2349
Related articles from Frontiers Journals
[1] YANG Wu-Bing*,SHEN Qing,WANG Qiang. Collective Interaction of Vortices in Two-Dimensional Shear Layers[J]. Chin. Phys. Lett., 2012, 29(5): 014701
[2] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 014701
[3] CHEN Shao-Yong, WANG Zhong-Tian, TANG Chang-Jian. Excitation of Internal Kink Mode by Circulating Supra-thermal Electrons[J]. Chin. Phys. Lett., 2012, 29(2): 014701
[4] XU Tao**, HU Qi-Ming, HU Xi-Wei, YU Qing-Quan . Locking of Tearing Modes by the Error Field[J]. Chin. Phys. Lett., 2011, 28(9): 014701
[5] HE Yong**, HU Xi-Wei, JIANG Zhong-He . Similar Rayleigh–Taylor Instability of Shock Fronts Perturbed by Corrugated Interfaces[J]. Chin. Phys. Lett., 2011, 28(5): 014701
[6] JI Xiao-Quan, YANG Qing-Wei, LIU Yi, ZHOU Jun, FENG Bei-Bin, YUAN Bao-Shan. First Observation of Neoclassical Tearing Modes in the HL-2A Tokamak[J]. Chin. Phys. Lett., 2010, 27(6): 014701
[7] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers[J]. Chin. Phys. Lett., 2010, 27(2): 014701
[8] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(2): 014701
[9] G. A. Hoshoudy . Quantum Effects on Rayleigh–Taylor Instability of Incompressible Plasma in a Vertical Magnetic Field[J]. Chin. Phys. Lett., 2010, 27(12): 014701
[10] YE Wen-Hua, **, WANG Li-Feng, , HE Xian-Tu, . Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(12): 014701
[11] WANG Li-Feng, YE Wen-Hua, , FAN Zheng-Feng, XUE Chuang, LI Ying-Jun. A Weakly Nonlinear Model for Kelvin-Helmholtz Instability in Incompressible Fluids[J]. Chin. Phys. Lett., 2009, 26(7): 014701
[12] WEI Gang, SU Xiao-Bing, LU Dong-Qiang, YOU Yun-Xiang, DAI Shi-Qiang. Flat Solitary Waves due to a Submerged Body Moving in a Stratified Fluid[J]. Chin. Phys. Lett., 2008, 25(6): 014701
[13] SONG Jun, SONG Jin-Bao. Effects of Buoyancy on Langmuir Circulation[J]. Chin. Phys. Lett., 2008, 25(5): 014701
[14] HAN Jian, JIANG Nan .. Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer[J]. Chin. Phys. Lett., 2008, 25(5): 014701
[15] FAN Zheng-Feng, LUO Ji-Sheng. Weak Nonlinearity of Ablative Rayleigh--Taylor Instability[J]. Chin. Phys. Lett., 2008, 25(2): 014701
Viewed
Full text


Abstract