Chin. Phys. Lett.  2009, Vol. 26 Issue (1): 013101    DOI: 10.1088/0256-307X/26/1/013101
ATOMIC AND MOLECULAR PHYSICS |
Molecular Dynamics Simulation of Bubble Nucleation in Explosive Boiling
ZOU Yu1,2, HUAI Xiu-Lan1, LIANG Shi-Qiang1
1Institute of Engineering Thermal Physics, Chinese Academy of Sciences, Beijing 1001902Graduate School of the Chinese Academy of Sciences, Beijing 100049
Cite this article:   
ZOU Yu, HUAI Xiu-Lan, LIANG Shi-Qiang 2009 Chin. Phys. Lett. 26 013101
Download: PDF(526KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Molecular dynamics (MD) simulation is carried out for the bubble nucleation of liquid nitrogen in explosive boiling. The heat is transferred into the simulation system by rescaling the velocity of the molecules. The results indicate that the initial equilibrium temperature of liquid and molecular cluster size affect the energy conversion in the process of bubble nucleation. The potential energy of the system violently varies at the beginning of the bubble nucleation, and then varies around a fixed value. At the end of bubble nucleation, the potential energy of the system slowly increases. In the bubble nucleation of explosive boiling, the lower the initial equilibrium temperature, the larger the size of the molecular cluster, and the more the heat transferred into the system of the simulation cell, causing the increase potential energy in a larger range.

Keywords: 31.15.Qg     
Received: 23 September 2008      Published: 24 December 2008
PACS:  31.15.Qg  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/1/013101       OR      https://cpl.iphy.ac.cn/Y2009/V26/I1/013101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZOU Yu
HUAI Xiu-Lan
LIANG Shi-Qiang
[1] Huai X L and Li Z G 2008 Heat Mass Transfer 45 117
[2] Alder B J and Wainwright T E 1957 J. Chem. Phys. 27 1208
[3] Shi H, Yu M, Huang R, Wang Y Y, Suzuki K and Oka H 2005 Chin. Phys. Lett. 22 76
[4] Yasuoka K and Matsumoto M 1998 J. Chem. Phys. 109 8451
[5] Wu Y W and Chin P 2003 Microscale Thermophys. Eng. 7 137
[6] Huai X L, Dong Z Y, Li Z G and Zou Y 2008 Experimental Heat Transfer 21 237
[7] Kazuhiro I 2005 Chin. Phys. Lett. 22 3052
[8] Kwak H Y and Panton R L 1985 J. Phys. D: Appl. Phys. 18 647
[9] Huai X L, Dong Z Y, Li Z G, Yin T N, Zou Y 2007 Chin.Phys. Lett. 24 2613
[10] Iida Y, Okuyama K and Sakurai K 1994 Int. J. HeatMass Transfer 37 2771
[11] Zeng X C 1996 J. Chem. Phys. 104 2699
[12] Nos\'{e S 1984 J. Chem. Phys. 81 511
[13] Hoover W G 1985 Phys. Rev. A 31 1695
[14] Zou Y, Huai X L and Liang S Q 2008 ASMEInternational Mechanical Engineering Congress and Exposition(Boston, USA October 31--November 6 2008)
[15] Huang X P and Huai X L 2008 Chin. Phys. Lett. 25 2973
Related articles from Frontiers Journals
[1] SEETAWAN Tosawat, WONG-UD-DEE Gjindara, THANACHAYANONT Chanchana, AMORNKITBUMRUNG Vittaya. Molecular Dynamics Simulation of Strontium Titanate[J]. Chin. Phys. Lett., 2010, 27(2): 013101
[2] ILIC D. I., SATARIC M. V., RALEVIC N.. Microtubule as a Transmission Line for Ionic Currents[J]. Chin. Phys. Lett., 2009, 26(7): 013101
[3] GONG Xiu-Fang, WANG Yin, NING Xi-Jing. Growth of C30 and C31 Clusters: Structures, Energetics and Dynamics[J]. Chin. Phys. Lett., 2008, 25(2): 013101
[4] LI Feng, WANG Ting-Ying, ZHANG Gui-Zhong, XIANG Wang-Hua, W. T. Hill III. Double-Exponentially Decayed Photoionization in CREI Effect: Numerical Experiment on 3D H2+[J]. Chin. Phys. Lett., 2008, 25(2): 013101
[5] ZENG Zhao-Yi, CHEN Xiang-Rong, , ZHU Jun, HU Cui-E,. Phase Transition and Melting Curves of Calcium Fluoride via Molecular Dynamics Simulations[J]. Chin. Phys. Lett., 2008, 25(1): 013101
[6] ZHANG Chun-Fang, WEI He-Lin, WANG Jian, LIU Zu-Li. Gold Nanobelt Reorientation by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2007, 24(8): 013101
[7] OU Shu-Ching, WU Guo-Zhen. Correlation between Chaotic Dynamics and Level Spacings: the Lyapunov and Dixon Dip Approaches to Highly Excited Vibration of Deuterium Cyanide[J]. Chin. Phys. Lett., 2007, 24(7): 013101
[8] S. ZDRAVKOVIC, M. V. SATARIC. Impact of Viscosity on DNA Dynamics[J]. Chin. Phys. Lett., 2007, 24(5): 013101
[9] BAI Yu-Lin, CHEN Xiang-Rong, ZHOU Xiao-Lin, CHENG Xiao-Hong, YANG Xiang-Dong,. First-Principles Calculations for Structures and Melting Temperature of Si6 Clusters[J]. Chin. Phys. Lett., 2006, 23(8): 013101
[10] ZHANG Zhe, ZHANG Gui-Zhong, XIANG Wang-Hua, W. T. Hill III. Absence of Charge-Resonance-Enhanced Ionization in Attosecond Pulse Photoionization: Numerical Result on One-Dimensional H2+[J]. Chin. Phys. Lett., 2006, 23(6): 013101
[11] WANG Xiao-Lu, CHEN Shao-Hao, HE Chun-Long, LI Jia-Ming,. Recombination Process of Hydrogen Molecular Ions: An Application of Time-Dependent Wave Packet Dynamics Method[J]. Chin. Phys. Lett., 2006, 23(3): 013101
[12] ZHANG Zhe, ZHANG Zhong-Qing, ZHANG Gui-Zhong, XIANG Wang-Hua, W. T. Hill III. Imaging Internuclear Separation of H2+ in Configuration Space: Reduced Dimensionality Model[J]. Chin. Phys. Lett., 2006, 23(3): 013101
[13] SHEN Min, WEI He-Lin, WANG Jian, LIU Zu-Li. Copper Nanobelt Reorientation by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2006, 23(10): 013101
[14] ZDRAVKOVIC S., SATARIC M. V.. Influence of Morse Potential on DNA Dynamics[J]. Chin. Phys. Lett., 2006, 23(1): 013101
[15] ZHOU Yu, ZHANG Gui-Zhong, XIANG Wang-Hua, W. T. Hill III. Profound Carrier-Envelope-Phase-Difference Effect on Photoionization Rate: Numerical Results on a Model Hydrogen Atom[J]. Chin. Phys. Lett., 2005, 22(9): 013101
Viewed
Full text


Abstract