Chin. Phys. Lett.  2009, Vol. 26 Issue (1): 010202    DOI: 10.1088/0256-307X/26/1/010202
GENERAL |
Inverse Scattering Method and Soliton Solution Family for String Effective Action
GAO Ya-Jun
Department of Physics, Bohai University, Jinzhou 121013
Cite this article:   
GAO Ya-Jun 2009 Chin. Phys. Lett. 26 010202
Download: PDF(181KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A modified Hauser--Ernst-type linear system is established and used to develop an inverse scattering method for solving the motion equations of the string effective action describing the coupled gravity, dilaton and Kalb-Ramond fields. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the proposed inverse scattering method applied fine and effective. As an application, a concrete family of soliton solutions for the considered theory is obtained.

Keywords: 02.30.Ik      04.50.-h      04.20.Jb     
Received: 17 May 2008      Published: 24 December 2008
PACS:  02.30.Ik (Integrable systems)  
  04.50.-h (Higher-dimensional gravity and other theories of gravity)  
  04.20.Jb (Exact solutions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/1/010202       OR      https://cpl.iphy.ac.cn/Y2009/V26/I1/010202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Ya-Jun
[1] Maharana J and Schwarz J H 1993 Nucl. Phys. B 390 3
[2] Maharana J 1995 Phys. Rev. Lett. 75 205 Maharana J 1995 Phys. Lett. B 348 70 Maharana J 1996 Mod. Phys. Lett.
[2] Maharana J 1995 Phys. Lett. A 11 9
[3] Kumar A and Ray K 1995 Phys. Lett. B 358 223
[4] Das A, Maharana J and Melikyan A 2001 Phys. Lett. B 518 306 Das A, Maharana J and Melikyan A 2002 Phys. Lett. B 533 146
[5] Das A, Maharana J and Melikyan A 2004 Int. J. Mod.Phys. A 19 4503
[6] Belinsky V A and Zakharov V E 1978 Sov. Phys. JETP 48 985 Belinsky V A and Zakharov V E 1979 Sov. Phys. JETP 50 1
[7] Hauser I and Ernst F J 1980 J. Math. Phys. 211126
[8] Cosgrove C M 1980 J. Math. Phys. 21 2417 Cosgrove C M 1982 J. Math. Phys. 23 615
[9] Zhong Z Z 1988 Sci. Sin. A 31 436 Gao Y J and Zhong Z Z 1992 J. Math. Phys. 33 278
[10] Neugebauer G and Kramer D 1983 J. Phys. A: Math.Gen. 16 1927 Alekseev G A 1980 Pis. Zh. Eksp. Teor. Fiz.
[JETPLett.] 32 301 Eris A, Gurses M and Karasu A 1984 J. Math. Phys. 25 1489
[11] Bakas I 1994 Nucl. Phys. B 428 374 Bakas I 1996 Phys. Rev. D 54 6424 Yurova M V 2000 Gen. Rel. Grav. 32 2219 Kechkin O V 2003 Class. Quant. Grav. 20 2157 Kechkin O V 2003 Class. Quant. Grav. 20 L217 Gao Y J 2003 Gen. Rel. Grav. 35 1885
[12] Yurova M 2001 Phys. Rev. D 64 024022 Yurova M 2001 Phys. Rev. D 65 024024
[13] Sen A 1995 Nucl. Phys. B 434 179 Sen A 1995 Nucl. Phys. B 447 62
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 010202
[2] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 010202
[3] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 010202
[4] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 010202
[5] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 010202
[6] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 010202
[7] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 010202
[8] R. K. Tiwari**, D. Tiwari, Pratibha Shukla. LRS Bianchi Type-II Cosmological Model with a Decaying Lambda Term[J]. Chin. Phys. Lett., 2012, 29(1): 010202
[9] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 010202
[10] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 010202
[11] R. K. Tiwari*, S. Sharma** . Bianchi Type-I String Cosmological Model with Bulk Viscosity and Time-Dependent Λ term[J]. Chin. Phys. Lett., 2011, 28(9): 010202
[12] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 010202
[13] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 010202
[14] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 010202
[15] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 010202
Viewed
Full text


Abstract