[1] | Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R, and Senthil T 2020 Science 367 eaay0668 | Quantum spin liquids
[2] | Savary L and Balents L 2017 Rep. Prog. Phys. 80 016502 | Quantum spin liquids: a review
[3] | Zhou Y, Kanoda K, and Ng T K 2017 Rev. Mod. Phys. 89 025003 | Quantum spin liquid states
[4] | Wen X G 2017 Rev. Mod. Phys. 89 041004 | Colloquium : Zoo of quantum-topological phases of matter
[5] | Wen X G 2019 Science 363 eaal3099 | Choreographed entanglement dances: Topological states of quantum matter
[6] | McEuen P L, Szafer A, Richter C A, Alphenaar B W, Jain J K, Stone A D, Wheeler R G, and Sacks R N 1990 Phys. Rev. Lett. 64 2062 | New resistivity for high-mobility quantum Hall conductors
[7] | Wang J K and Goldman V J 1991 Phys. Rev. Lett. 67 749 | Edge states in the fractional quantum Hall effect
[8] | Pippard A B and Bragg W L 1953 Proc. R. Soc. London Ser. A 216 547 | An experimental and theoretical study of the relation between magnetic field and current in a superconductor
[9] | Han T H, Singleton J, and Schlueter J A 2014 Phys. Rev. Lett. 113 227203 | Barlowite: A Spin- Antiferromagnet with a Geometrically Perfect Kagome Motif
[10] | Feng Z, Wei Y, Liu R, Yan D, Wang Y C, Luo J, Senyshyn A, Cruz C D, Yi W, Mei J W, Meng Z Y, Shi Y, and Li S 2018 Phys. Rev. B 98 155127 | Effect of Zn doping on the antiferromagnetism in kagome
[11] | Tustain K, Nilsen G J, Ritter C, da S I, and Clark L 2018 Phys. Rev. Mater. 2 111405 | Nuclear and magnetic structures of the frustrated quantum antiferromagnet barlowite,
[12] | Wei Y, Ma X, Feng Z, Adroja D, Hillier A, Biswas P, Senyshyn A, Hoser A, Mei J W, Meng Z Y, Luo H, Shi Y, and Li S 2020 Chin. Phys. Lett. 37 107503 | Magnetic Phase Diagram of Cu$_{4-x}$Zn$_x$(OH)$_6$FBr Studied by Neutron-Diffraction and $\mu$SR Techniques
[13] | Tustain K, Ward-O'Brien B, Bert F, Han T H, Luetkens H, Lancaster T, Huddart B M, Baker P J, and Clark L 2020 arXiv:2005.12615 [cond-mat.str-el] | From magnetic order to quantum disorder: a $μ$SR study of the Zn-barlowite series of $S={\frac{1}{2}}$ kagomé antiferromagnets, Zn$_{x}$Cu$_{4-x}$(OH)$_{6}$FBr
[14] | Wen J J and Lee Y S 2019 Chin. Phys. Lett. 36 050101 | The Search for the Quantum Spin Liquid in Kagome Antiferromagnets
[15] | Feng Z, Li Z, Meng X, Yi W, Wei Y, Zhang J, Wang Y C, Jiang W, Liu Z, Li S, Liu F, Luo J, Li S, Zheng G Q, Meng Z Y, Mei J W, and Shi Y 2017 Chin. Phys. Lett. 34 077502 | Gapped Spin-1/2 Spinon Excitations in a New Kagome Quantum Spin Liquid Compound Cu 3 Zn(OH) 6 FBr
[16] | Wei Y, Feng Z, Hu D H, Lohstroh W, dela C C, Yi W, Ding Z F, Zhang J, Tan C, Shu L, Wang Y C, Wu H Q, Luo J, Mei J W, Meng Z Y, Shi Y, and Li S 2019 arXiv:1710.02991 [cond-mat.str-el] | Evidence for a Z$_2$ topological ordered quantum spin liquid in a kagome-lattice antiferromagnet
[17] | Wen X G 2017 Chin. Phys. Lett. 34 090101 | Discovery of Fractionalized Neutral Spin-1/2 Excitation of Topological Order
[18] | Norman M R 2016 Rev. Mod. Phys. 88 041002 | Colloquium : Herbertsmithite and the search for the quantum spin liquid
[19] | Shores M P, Nytko E A, Bartlett B M, and Nocera D G 2005 J. Am. Chem. Soc. 127 13462 | A Structurally Perfect S = 1 / 2 Kagomé Antiferromagnet
[20] | de Vries M A, Kamenev K V, Kockelmann W A, Sanchez-Benitez J, and Harrison A 2008 Phys. Rev. Lett. 100 157205 | Magnetic Ground State of an Experimental Kagome Antiferromagnet
[21] | Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C, and Lee Y S 2012 Nature 492 406 | Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet
[22] | Han T H, Norman M R, Wen J J, Rodriguez-Rivera J A, Helton J S, Broholm C, and Lee Y S 2016 Phys. Rev. B 94 060409 | Correlated impurities and intrinsic spin-liquid physics in the kagome material herbertsmithite
[23] | Fu M, Imai T, Han T H, and Lee Y S 2015 Science 350 655 | Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet
[24] | Kimchi I, Sheckelton J P, McQueen T M, and Lee P A 2018 Nat. Commun. 9 4367 | Scaling and data collapse from local moments in frustrated disordered quantum spin systems
[25] | Khuntia P, Velazquez M, Barthélemy Q, Bert F, Kermarrec E, Legros A, Bernu B, Messio L, Zorko A, and Mendels P 2020 Nat. Phys. 16 469 | Gapless ground state in the archetypal quantum kagome antiferromagnet ZnCu3(OH)6Cl2
[26] | Feng Z, Yi W, Zhu K, Wei Y, Miao S, Ma J, Luo J, Li S, Meng Z Y, and Shi Y 2018 Chin. Phys. Lett. 36 017502 | From Claringbullite to a New Spin Liquid Candidate Cu 3 Zn(OH) 6 FCl
[27] | Balents L, Fisher M P A, and Girvin S M 2002 Phys. Rev. B 65 224412 | Fractionalization in an easy-axis Kagome antiferromagnet
[28] | Isakov S V, Hastings M B, and Melko R G 2011 Nat. Phys. 7 772 | Topological entanglement entropy of a Bose–Hubbard spin liquid
[29] | Isakov S V, Melko R G, and Hastings M B 2012 Science 335 193 | Universal Signatures of Fractionalized Quantum Critical Points
[30] | Wang Y C, Zhang X F, Pollmann F, Cheng M, and Meng Z Y 2018 Phys. Rev. Lett. 121 057202 | Quantum Spin Liquid with Even Ising Gauge Field Structure on Kagome Lattice
[31] | Wang Y C, Fang C, Cheng M, Qi Y, and Meng Z Y 2017 arXiv:1701.01552 [cond-mat.str-el] | Topological Spin Liquid with Symmetry-Protected Edge States
[32] | Sun G Y, Wang Y C, Fang C, Qi Y, Cheng M, and Meng Z Y 2018 Phys. Rev. Lett. 121 077201 | Dynamical Signature of Symmetry Fractionalization in Frustrated Magnets
[33] | Wang Y C, Cheng M, Witczak-Krempa W, and Meng Z Y 2020 arXiv:2005.07337 [cond-mat.str-el] | Fractionalized conductivity and emergent self-duality near topological phase transitions
[34] | Schnack J, Schulenburg J, and Richter J 2018 Phys. Rev. B 98 094423 | Magnetism of the kagome lattice antiferromagnet
[35] | Ran Y, Hermele M, Lee P A, and Wen X G 2007 Phys. Rev. Lett. 98 117205 | Projected-Wave-Function Study of the Spin- Heisenberg Model on the Kagomé Lattice
[36] | Isakov S V, Kim Y B, and Paramekanti A 2006 Phys. Rev. Lett. 97 207204 | Spin-Liquid Phase in a Spin- Quantum Magnet on the Kagome Lattice
[37] | Kodama R H, Makhlouf S A, and Berkowitz A E 1997 Phys. Rev. Lett. 79 1393 | Finite Size Effects in Antiferromagnetic NiO Nanoparticles
[38] | Mandal S, Banerjee S, and Menon K S R 2009 Phys. Rev. B 80 214420 | Core-shell model of the vacancy concentration and magnetic behavior for antiferromagnetic nanoparticle
[39] | See the Supplemental Material for more experimental details |
[40] | Hansson T H, Oganesyan V, and Sondhi S L 2004 Ann. Phys. 313 497 | Superconductors are topologically ordered
[41] | Moroz S, Prem A, Gurarie V, and Radzihovsky L 2017 Phys. Rev. B 95 014508 | Topological order, symmetry, and Hall response of two-dimensional spin-singlet superconductors
[42] | Anderson P W 1973 Mater. Res. Bull. 8 153 | Resonating valence bonds: A new kind of insulator?
[43] | Haegeman J, Zauner V, Schuch N, and Verstraete F 2015 Nat. Commun. 6 8284 | Shadows of anyons and the entanglement structure of topological phases