[1] | Anderson P W 1973 Mater. Res. Bull. 8 153 | Resonating valence bonds: A new kind of insulator?
[2] | Kitaev A 2006 Ann. Phys. 321 2 | Anyons in an exactly solved model and beyond
[3] | Zhou Y, Kanoda K, and Ng T K 2017 Rev. Mod. Phys. 89 025003 | Quantum spin liquid states
[4] | Balents L 2010 Nature 464 199 | Spin liquids in frustrated magnets
[5] | Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C, and Lee Y S 2012 Nature 492 406 | Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet
[6] | Fu M, Imai T, Han T H, and Lee Y S 2015 Science 350 655 | Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet
[7] | Feng Z, Yi W, Zhu K, Wei Y, Miao S, Ma J, Luo J, Li S, Meng Z Y, and Shi Y 2019 Chin. Phys. Lett. 36 017502 | From Claringbullite to a New Spin Liquid Candidate Cu 3 Zn(OH) 6 FCl
[8] | Shimizu Y, Miyagawa K, Kanoda K, Maesato M, and Saito G 2003 Phys. Rev. Lett. 91 107001 | Spin Liquid State in an Organic Mott Insulator with a Triangular Lattice
[9] | Yamashita M, Nakata N, Senshu Y, Nagata M, Yamamoto H M, Kato R, Shibauchi T, and Matsuda Y 2010 Science 328 1246 | Highly Mobile Gapless Excitations in a Two-Dimensional Candidate Quantum Spin Liquid
[10] | Liu W, Zhang Z, Ji J, Liu Y, Li J, Wang X, Lei H, Chen G, and Zhang Q 2018 Chin. Phys. Lett. 35 117501 | Rare-Earth Chalcogenides: A Large Family of Triangular Lattice Spin Liquid Candidates
[11] | Jia Y T, Gong C S, Liu Y X, Zhao J F, Dong C, Dai G Y, Li X D, Lei H C, Yu R Z, Zhang G M, and Jin C Q 2020 Chin. Phys. Lett. 37 097404 | Mott Transition and Superconductivity in Quantum Spin Liquid Candidate NaYbSe 2
[12] | Zhang Z, Li J, Liu W, Zhang Z, Ji J, Jin F, Chen R, Wang J, Wang X, Ma J, and Zhang Q 2021 Phys. Rev. B 103 184419 | Effective magnetic Hamiltonian at finite temperatures for rare-earth chalcogenides
[13] | Jackeli G and Khaliullin G 2009 Phys. Rev. Lett. 102 017205 | Mott Insulators in the Strong Spin-Orbit Coupling Limit: From Heisenberg to a Quantum Compass and Kitaev Models
[14] | Chaloupka J, Jackeli G, and Khaliullin G 2010 Phys. Rev. Lett. 105 027204 | Kitaev-Heisenberg Model on a Honeycomb Lattice: Possible Exotic Phases in Iridium Oxides
[15] | Ye F, Chi S, Cao H, Chakoumakos B C, Fernandez-Baca J A, Custelcean R, Qi T F, Korneta O B, and Cao G 2012 Phys. Rev. B 85 180403(R) | Direct evidence of a zigzag spin-chain structure in the honeycomb lattice: A neutron and x-ray diffraction investigation of single-crystal Na IrO
[16] | Banerjee A, Bridges C A, Yan J Q, Aczel A A, Li L, Stone M B, Granroth G E, Lumsden M D, Yiu Y, Knolle J, Bhattacharjee S, Kovrizhin D L, Moessner R, Tennant D A, Mandrus D G, and Nagler S E 2016 Nat. Mater. 15 733 | Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet
[17] | Banerjee A, Yan J, Knolle J, Bridges C A, Stone M B, Lumsden M D, Mandrus D G, Tennant D A, Moessner R, and Nagler S E 2017 Science 356 1055 | Neutron scattering in the proximate quantum spin liquid α-RuCl 3
[18] | Sears J A, Chern L E, Kim S, Bereciartua P J, Francoual S, Kim Y B, and Kim Y J 2020 Nat. Phys. 16 837 | Ferromagnetic Kitaev interaction and the origin of large magnetic anisotropy in α-RuCl3
[19] | Banerjee A, Lampen-Kelley P, Knolle J, Balz C, Aczel A, Winn B, Liu Y, Pajerowski D, Yan J, Bridges C A, Savici A T, Chakoumakos B C, Lumsden M D, Tennant D A, Moessner R, Mandrus D G, and Nagler S E 2018 npj Quantum Mater. 3 8 | Excitations in the field-induced quantum spin liquid state of α-RuCl3
[20] | Kubota Y, Tanaka H, Ono T, Narumi Y, and Kindo K 2015 Phys. Rev. B 91 094422 | Successive magnetic phase transitions in : XY-like frustrated magnet on the honeycomb lattice
[21] | Do S H, Park S Y, Yoshitake J, Nasu J, Motome Y, Kwon Y S, Adroja D T, Voneshen D J, Kim K, Jang T H, Park J H, Choi K Y, and Ji S 2017 Nat. Phys. 13 1079 | Majorana fermions in the Kitaev quantum spin system α-RuCl3
[22] | Widmann S, Tsurkan V, Prishchenko D A, Mazurenko V G, Tsirlin A A, and Loidl A 2019 Phys. Rev. B 99 094415 | Thermodynamic evidence of fractionalized excitations in
[23] | Lampen-Kelley P, Rachel S, Reuther J, Yan J Q, Banerjee A, Bridges C A, Cao H B, Nagler S E, and Mandrus D 2018 Phys. Rev. B 98 100403 | Anisotropic susceptibilities in the honeycomb Kitaev system
[24] | Weber D, Schoop L M, Duppel V, Lippmann J M, Nuss J, and Lotsch B V 2016 Nano Lett. 16 3578 | Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl 3 Nanosheets
[25] | Johnson R D, Williams S C, Haghighirad A A, Singleton J, Zapf V, Manuel P, Mazin I I, Li Y, Jeschke H O, Valentí R, and Coldea R 2015 Phys. Rev. B 92 235119 | Monoclinic crystal structure of and the zigzag antiferromagnetic ground state
[26] | Laurell P and Okamoto S 2020 npj Quantum Mater. 5 2 | Dynamical and thermal magnetic properties of the Kitaev spin liquid candidate α-RuCl3
[27] | Wiebe N, Granade C, Ferrie C, and Cory D G 2014 Phys. Rev. Lett. 112 190501 | Hamiltonian Learning and Certification Using Quantum Resources
[28] | Sels D, Dashti H, Mora S, Demler O, and Demler E 2020 Nat. Mach. Intell. 2 396 | Quantum approximate Bayesian computation for NMR model inference
[29] | Pakrouski K 2020 Quantum 4 315 | Automatic design of Hamiltonians
[30] | Bursill R J, Xiang T, and Gehring G A 1996 J. Phys.: Condens. Matter 8 L583 | The density matrix renormalization group for a quantum spin chain at non-zero temperature
[31] | Wang X and Xiang T 1997 Phys. Rev. B 56 5061 | Transfer-matrix density-matrix renormalization-group theory for thermodynamics of one-dimensional quantum systems
[32] | Xiang T 1998 Phys. Rev. B 58 9142 | Thermodynamics of quantum Heisenberg spin chains
[33] | Feiguin A E and White S R 2005 Phys. Rev. B 72 220401(R) | Finite-temperature density matrix renormalization using an enlarged Hilbert space
[34] | White S R 2009 Phys. Rev. Lett. 102 190601 | Minimally Entangled Typical Quantum States at Finite Temperature
[35] | Stoudenmire E M and White S R 2010 New J. Phys. 12 055026 | Minimally entangled typical thermal state algorithms
[36] | Li W, Ran S J, Gong S S, Zhao Y, Xi B, Ye F, and Su G 2011 Phys. Rev. Lett. 106 127202 | Linearized Tensor Renormalization Group Algorithm for the Calculation of Thermodynamic Properties of Quantum Lattice Models
[37] | Dong Y L, Chen L, Liu Y J, and Li W 2017 Phys. Rev. B 95 144428 | Bilayer linearized tensor renormalization group approach for thermal tensor networks
[38] | Chen B B, Liu Y J, Chen Z, and Li W 2017 Phys. Rev. B 95 161104(R) | Series-expansion thermal tensor network approach for quantum lattice models
[39] | Chen B B, Chen L, Chen Z, Li W, and Weichselbaum A 2018 Phys. Rev. X 8 031082 | Exponential Thermal Tensor Network Approach for Quantum Lattice Models
[40] | Li H, Chen B B, Chen Z, von Delft J, Weichselbaum A, and Li W 2019 Phys. Rev. B 100 045110 | Thermal tensor renormalization group simulations of square-lattice quantum spin models
[41] | Carleo G and Troyer M 2017 Science 355 602 | Solving the quantum many-body problem with artificial neural networks
[42] | Liao H J, Liu J G, Wang L, and Xiang T 2019 Phys. Rev. X 9 031041 | Differentiable Programming Tensor Networks
[43] | Chen B B, Gao Y, Guo Y B, Liu Y, Zhao H H, Liao H J, Wang L, Xiang T, Li W, and Xie Z Y 2020 Phys. Rev. B 101 220409(R) | Automatic differentiation for second renormalization of tensor networks
[44] | Stoudenmire E and Schwab D J 2016 Advances in Neural Information Processing Systems 29 (Curran Associates, Inc.) p 4799 |
[45] | Liu D, Ran S J, Wittek P, Peng C, García R B, Su G, and Lewenstein M 2019 New J. Phys. 21 073059 | Machine learning by unitary tensor network of hierarchical tree structure
[46] | Ran S J 2019 arXiv:1912.12923 [stat.ML] | Bayesian Tensor Network with Polynomial Complexity for Probabilistic Machine Learning
[47] | Cichocki A, Phan A H, Zhao Q, Lee N, Oseledets I, Sugiyama M, and Mandic D P 2017 Found. Trends$^{\rm\circledR}$ Mach. Learn. 9 431 | Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 2 Applications and Future Perspectives
[48] | Han Z Y, Wang J, Fan H, Wang L, and Zhang P 2018 Phys. Rev. X 8 031012 | Unsupervised Generative Modeling Using Matrix Product States
[49] | Glasser I, Sweke R, Pancotti N, Eisert J, and Cirac J I 2019 33rd Conference on Neural Information Processing Systems, in Advances in Neural Information Processing Systems ed Wallach H, Larochelle H, Beygelzimer A et al. (Vancouver, Canada: Curran Associates, Inc.) vol 32 |
[50] | Czarnik P and Dziarmaga J 2014 Phys. Rev. B 90 035144 | Fermionic projected entangled pair states at finite temperature
[51] | In Figs. 2 and 3, we first exploit a loss function without the denominator $1/ O^{\exp}_\alpha$, i.e., $\mathcal{L}({\boldsymbol x}) = \sum_{\alpha} \sum_{T > T_{\rm cut}} \lambda_{\alpha} [O^{\exp}_\alpha(T)-O^{{\rm sim},{\boldsymbol x}}_\alpha(T)]^2$, where $\lambda_{\alpha}^{-1/2} = \max_{_{\scriptstyle T>T_{\rm cut}}} [O^{\exp}_\alpha(T), O^{{\rm sim},{\boldsymbol x}}_\alpha(T)]$. Then in Figs. 4 and 5 we follow exactly the loss definition in Eq. (1), and observe that both schemes work well. |
[52] | LeCun Y, Bengio Y, and Hinton G 2015 Nature 521 436 | Deep learning
[53] | Shahriari B, Swersky K, Wang Z, Adams R P, and de Freitas N 2016 Proc. IEEE 104 148 | Taking the Human Out of the Loop: A Review of Bayesian Optimization
[54] | Melnikov A A, Poulsen N H, Krenn M, Dunjko V, Tiersch M, Zeilinger A, and Briegel H J 2018 Proc. Natl. Acad. Sci. USA 115 1221 | Active learning machine learns to create new quantum experiments
[55] | Lizotte D J 2008 PhD Dissertation (Edmonton: University of Alberta) |
[56] | Bonner J C, Friedberg S A, Kobayashi H, Meier D L, and Blöte H W J 1983 Phys. Rev. B 27 248 | Alternating linear-chain antiferromagnetism in copper nitrate Cu .2.5 O
[57] | Xu G, Broholm C, Reich D H, and Adams M A 2000 Phys. Rev. Lett. 84 4465 | Triplet Waves in a Quantum Spin Liquid
[58] | Xiang J S, Chen C, Li W, Sheng X L, Su N, Cheng Z H, Chen Q, and Chen Z Y 2017 Sci. Rep. 7 44643 | Criticality-Enhanced Magnetocaloric Effect in Quantum Spin Chain Material Copper Nitrate
[59] | Berger L, Friedberg S A, and Schriempf J T 1963 Phys. Rev. 132 1057 | Magnetic Susceptibility of Cu ·2.5 O at Low Temperature
[60] | van Tol M W, Henkens L S J M, and Poulis N J 1971 Phys. Rev. Lett. 27 739 | High-Field Magnetic Phase Transition in
[61] | Li H, Liao Y D, Chen B B, Zeng X T, Sheng X L, Qi Y, Meng Z Y, and Li W 2020 Nat. Commun. 11 1111 | Kosterlitz-Thouless melting of magnetic order in the triangular quantum Ising material TmMgGaO4
[62] | Li Y, Bachus S, Deng H, Schmidt W, Thoma H, Hutanu V, Tokiwa Y, Tsirlin A A, and Gegenwart P 2020 Phys. Rev. X 10 011007 | Partial Up-Up-Down Order with the Continuously Distributed Order Parameter in the Triangular Antiferromagnet
[63] | Shen Y, Liu C, Qin Y, Shen S, Li Y D, Bewley R, Schneidewind A, Chen G, and Zhao J 2019 Nat. Commun. 10 4530 | Intertwined dipolar and multipolar order in the triangular-lattice magnet TmMgGaO4
[64] | Cevallos F A, Stolze K, Kong T, and Cava R J 2018 Mater. Res. Bull. 105 154 | Anisotropic magnetic properties of the triangular plane lattice material TmMgGaO4
[65] | Hu Z, Ma Z, Liao Y D, Li H, Ma C, Cui Y, Shangguan Y, Huang Z, Qi Y, Li W, Meng Z Y, Wen J, and Yu W 2020 Nat. Commun. 11 5631 | Evidence of the Berezinskii-Kosterlitz-Thouless phase in a frustrated magnet
[66] | Dun Z, Daum M, Baral R, Fischer H E, Cao H, Liu Y, Stone M B, Rodriguez-Rivera J A, Choi E S, Huang Q, Zhou H, Mourigal M, and Frandsen B A 2021 Phys. Rev. B 103 064424 | Neutron scattering investigation of proposed Kosterlitz-Thouless transitions in the triangular-lattice Ising antiferromagnet
[67] | Lou F, Li X Y, Ji J Y, Yu H Y, Feng J S, Gong X G, and Xiang H J 2021 J. Chem. Phys. 154 114103 | PASP: Property analysis and simulation package for materials
[68] | Zhitomirsky M E 2003 Phys. Rev. B 67 104421 | Enhanced magnetocaloric effect in frustrated magnets
[69] | Zhitomirsky M E and Honecker A 2004 J. Stat. Mech.: Theory Exp. 2004 P07012 | Magnetocaloric effect in one-dimensional antiferromagnets
[70] | Garst M and Rosch A 2005 Phys. Rev. B 72 205129 | Sign change of the Grüneisen parameter and magnetocaloric effect near quantum critical points
[71] | Wolf B, Tsui Y, Jaiswal-Nagar D, Tutsch U, Honecker A, Remović-Langer K, Hofmann G, Prokofiev A, Assmus W, Donath G, and Lang M 2011 Proc. Natl. Acad. Sci. USA 108 6862 | Magnetocaloric effect and magnetic cooling near a field-induced quantum-critical point
[72] | Gegenwart P 2016 Rep. Prog. Phys. 79 114502 | Grüneisen parameter studies on heavy fermion quantum criticality
[73] | Karbach P and Stolze J 2005 Phys. Rev. A 72 030301(R) | Spin chains as perfect quantum state mirrors
[74] | Cappellaro P, Ramanathan C, and Cory D G 2007 Phys. Rev. Lett. 99 250506 | Simulations of Information Transport in Spin Chains