Chin. Phys. Lett.  2008, Vol. 25 Issue (4): 1461-1464    DOI:
Original Articles |
Optical Nonlinear Properties of CdSeS/ZnS Core/Shell Quantum Dots
WU Feng1,2;TIAN Wei1;MA i-Na1;CHEN Wen-Ju1;ZFANG Gui-Lan1;ZHAO Guo-Feng3;CAO Shi-Dong3;XIE Wei3
1Laboratory of Optoelectronics Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 3000712Departments of Physics, North University of China, Taiyuan 0300513Yourui Quantum Dots Company of Technology Development, Tianjin 300071
Cite this article:   
WU Feng, TIAN Wei, MA i-Na et al  2008 Chin. Phys. Lett. 25 1461-1464
Download: PDF(2126KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The optical nonlinear properties of CdSeS/ZnS quantum dots (QDs) are
investigated by Z-scan technique using fundamental harmonic generation
(1064nm) of mode-locked Nd:YAG laser for the first time. The experimental results show that two photon absorptions (TPA) occur at input intensity up to 12.5GW/cm2. CdSeS/ZnS QDs have an average TPA cross section of 13710GM and large nonlinear refractive index on order of 10-7esu. The large optical nonlinearities perhaps allow the CdSeS/ZnS QDs to be one kind of candidate material for bioimaging and fluorescence label, optical limiting and all-optical switching.
Keywords: 78.67.Hc      42.65.-k     
Received: 19 December 2007      Published: 31 March 2008
PACS:  78.67.Hc (Quantum dots)  
  42.65.-k (Nonlinear optics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I4/01461
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Feng
TIAN Wei
MA i-Na
CHEN Wen-Ju
ZFANG Gui-Lan
ZHAO Guo-Feng
CAO Shi-Dong
XIE Wei
[1] Akira M et al 2005 J. Histochem. Cytochem. 53 833
[2] Smita P et al 2006 J. Neurosci. 26 1893
[3] Fu A et al 2005 Current Opinion in Neurobiology 15568
[4] Hao Z H et al 2006 Chin. Phys. Lett. 23 2859
[5] Prasanth R et al 2004 Appl. Phys. Lett. 84 4059
[6] Yu B L, Zhang G L and Chen W J 1996 Acta Phys. Sin. 5 377 (in Chinese)
[7] He J et al 2004 J. Appl. Phys. 95 6381
[8] V V Nikesh et al 2004 Appl. Phys. Lett. 84 4602
[9] Wang X et al 2006 J. Phys. Chem. B 110 1566
[10] B O Dabbousi et al 1997 J. Phys. Chem. B 101 9463
[11] Reiss P et al 2003 Synthetic Metals 139 649
[12] Lin C I et al 2004 Biosenelectronics 20 127
[13] Ding S et al 2006 Acta Phys. Sin. 55 753 (in Chinese)
[14] Irina G and Alain H 2005 Opt. Commun. 246 205
[15] Feng X et al 2006 Physica B 383 207
[16] Amit D L et al 2007 Appl. Phys. Lett. 90 133113
[17] Najeh A S et al 2007 Chem. Mater. 19 5185
[18] Zheng J et al 2006 J. Opt. A: Pure Appl. Opt. 8 835
[19] By A D Yoffe 1993 Adv. Phys. 42 173
[20] Shinojima H, Yumoto J and Uesugi N 1992 Appl. Phys.Lett. 60 298
[21] Sheik-Bahae M et al 1990 IEEE J. Quantum Electron. 26760
[22] Zheng J J et al 2006 Chin. Phys. Lett. 23 3097
Related articles from Frontiers Journals
[1] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 1461-1464
[2] XUAN Hong-Wen, WANG Nan, ZHANG Yong-Dong, WANG Zhao-Hua, WEI Zhi-Yi. A Tunable Ultrafast Source by Sum-Frequency Generation between Two Actively Synchronized Ultrafast Lasers[J]. Chin. Phys. Lett., 2012, 29(6): 1461-1464
[3] TONG Jun-Yi, TAN Wen-Jiang, SI Jin-Hai, CHEN Feng, YI Wen-Hui, HOU Xun. High Time-Resolved Imaging of Targets in Turbid Media Using Ultrafast Optical Kerr Gate[J]. Chin. Phys. Lett., 2012, 29(2): 1461-1464
[4] DONG Jian-Ji**, LUO Bo-Wen, ZHANG Yin, LEI Lei, HUANG De-Xiu, ZHANG Xin-Liang. All-Optical Temporal Differentiator Using a High Resolution Optical Arbitrary Waveform Shaper[J]. Chin. Phys. Lett., 2012, 29(1): 1461-1464
[5] WANG Jing, ZHANG Xiao-Min, HAN Wei, LI Fu-Quan, ZHOU Li-Dan**, FENG Bin, XIANG Yong . Experimental Observation of Near-Field Deterioration Induced by Stimulated Rotational Raman Scattering in Long Air Paths[J]. Chin. Phys. Lett., 2011, 28(8): 1461-1464
[6] DONG Shu-Guang, YANG Jun-Yi, SHUI Min, YI Chuan-Xiang, LI Zhong-Guo, SONG Ying-Lin** . Measurement of Temperature Change in Nonlinear Optical Materials by Using the Z-Scan Technique[J]. Chin. Phys. Lett., 2011, 28(8): 1461-1464
[7] TANG Jian-Shun, LI Yu-Long, LI Chuan-Feng**, XU Jin-Shi, CHEN Geng, ZOU Yang, ZHOU Zong-Quan, GUO Guang-Can . Experimental Violation of Multiple-Measurement Time-Domain Bell's Inequalities[J]. Chin. Phys. Lett., 2011, 28(6): 1461-1464
[8] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 1461-1464
[9] LI De-Hua, **, MA Jian-Jun, ZHOU Wei, LIU Sheng-Gang . Terahertz Waveforms Manipulation by Two Orthogonal-Polarized Femtosecond Pulses[J]. Chin. Phys. Lett., 2011, 28(6): 1461-1464
[10] TIAN Peng, HUANG Li-Rong**, YUAN Xiu-Hua, HUANG De-Xiu . Effects of an InGaAs Cap Layer on the Optical Properties of InAs Quantum Dot Molecules[J]. Chin. Phys. Lett., 2011, 28(6): 1461-1464
[11] LIU Xiao-Lan, PENG Xiao-Niu, YANG Zhong-Jian, LI Min, ZHOU Li** . Linear and Nonlinear Optical Properties of Micrometer-Scale Gold Nanoplates[J]. Chin. Phys. Lett., 2011, 28(5): 1461-1464
[12] P. Nalini, A. John Peter** . Energy Gap Dependence on Mn Content in a Diluted Magnetic Quantum Dot[J]. Chin. Phys. Lett., 2011, 28(4): 1461-1464
[13] YANG Xiao-Guang, YANG Tao**, WANG Ke-Fan, GU Yong-Xian, JI Hai-Ming, XU Peng-Fei, NI Hai-Qiao, NIU Zhi-Chuan, WANG Xiao-Dong, CHEN Yan-Ling, WANG Zhan-Guo . Intermediate-Band Solar Cells Based on InAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(3): 1461-1464
[14] WANG Wen-Li, XU Xin-Ye** . Modulation Transfer Spectroscopy of Ytterbium Atoms in a Hollow Cathode Lamp[J]. Chin. Phys. Lett., 2011, 28(3): 1461-1464
[15] LIU Xiu-Huan, CHEN Zhan-Guo**, JIA Gang, WANG Hai-Yan, GAO Yan-Jun, LI Yi . A [111]-Cut Si Hemisphere Two-Photon Response Photodetector[J]. Chin. Phys. Lett., 2011, 28(11): 1461-1464
Viewed
Full text


Abstract