Original Articles |
|
|
|
|
Optical Properties of Co--BaTiO3/Mg(100) Nano-Composite Films Grown by Pulsed Laser Deposition Method |
WU Wei-Dong1,2;WANG Feng1,3;GE Fang-Fang1,4;BAI Li1,2;LEI Hai-Le1;TANG Yong-Jian1,2;JU Xin5;CHEN Zheng-Hao1,6;SUN Wei-Guo1,3 |
1Research Center of Laser Fusion, China Academy of Engineering Physics, PO Box 919-986, Mianyang 6219002Department of Physics, Southwest University of Science and Technology, Mianyang 6210103Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 6100654Department of Physics, Tongji University, Shanghai 2169005Department of Physics, Nanjing University, Nanjing 2100936Laboratory of Optical Physics, Institute of Physics, Center for Condensed Matter Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100080 |
|
Cite this article: |
WU Wei-Dong, WANG Feng, GE Fang-Fang et al 2008 Chin. Phys. Lett. 25 1465-1468 |
|
|
Abstract Co nanoparticles embedded in a BaTiO3 matrix, namely Co--BaTiO3 nano-composite films are grown on Mg(100) single crystal substrates by the pulsed laser deposition (PLD) method at 650°C. Optical properties of the Co--BaTiO3 nano-composite films are examined by absorption spectra (AS) and photoluminescence (PL) spectra. The results indicate that the concentration of Co nano-particles strongly influences the electron transition of the Co--BaTiO3 nano-composite films. The PL emission band ranging from 1.9 to 2.2eV is reported. The AS and PL spectra suggest that the band gap is in the range of 3.28--3.7eV.
|
Keywords:
78.67.-n
81.15.Fg
42.70.Mp
|
|
Received: 24 October 2007
Published: 31 March 2008
|
|
PACS: |
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
81.15.Fg
|
(Pulsed laser ablation deposition)
|
|
42.70.Mp
|
(Nonlinear optical crystals)
|
|
|
|
|
[1] Wang W T, Chen Z H, Yang G, Guan D Y, Yang G Z, Zhou Y Land Lu H B 2003 Appl. Phys. Lett. 83 1983 [2] Yang G, Wang W T, Zhou Y L, Lu H B, Yang G Z and Chen Z H2002 Appl. Phys. Lett. 81 3969 [3] Wang W T, Yang G, Wu W D and Chen Z H 2003 J. Appl.Phys. 94 6837 [4] Yuen K D, Law M F, Yu K W and Sheng P 1998 Opt.Commun. 148 197 [5] Wen W J, Wang N, Ma H R, Lin Z F, Tam W Y, Chan C T andSheng P 1999 Phys. Rev. Lett. 82 4248 [6] Zhang H X, Kam C H, Zhou Y, Han X Q, Buddhudu S, Xiang Q,Lam Y L and Chan Y C 2000 Appl. Phys. Lett. 77 609 [7] Wu W D, He Y J, Wang F, Chen Z H, Tang Y J and Sun W G2006 J. Crystal. Growth 289 408 [8] Klingshirn C F 1997 Semiconductor Optics (Berlin:Springer) p 37 [9] Isksmov S P, Heifets E, Eglitis R Z and Borstel G 2004 Comput. Mater. Sci. 29 165 [10] Xue X Y, Wang C L and Zhong W L 2004 Surf. Sci. 550 73 [11] Peter Y Yu 1996 Fundamental of Semiconductors(Berlin: Springer) p 258 [12] Klingshirn C F 1997 Semiconductor Optics (Berlin:Springer) p 236 [13] Wu W D, He Y J, Wang F, Zhan Y J, Bai L, Ju X, Chen Z H,Tang Y J, Sun W G and Pan H B 2008 Acta Phys. Sin. 57 600(in Chinese) [14] Wu W D 2007 PhD Dissertation (Sichuan University)(in Chinese) [15] Berglond C N and Braun H J 1967 Phys. Rev. 164 790 [16] Chang J Y, Garrett M H, Jenssen H P and Warde C 1993 Appl. Phys. Lett. 3598 63 [17] Zhao T 2000 PhD Dissertation (Institute ofPhysics, Chinese Academy Sciences) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|