Chin. Phys. Lett.  2008, Vol. 25 Issue (4): 1340-1342    DOI:
Original Articles |
A Numerical Tackling on Sakiadis Flow with Thermal Radiation
Rafael Cortell
Department of Applied Physics, Polytechnic University of Valencia, 46022 Valencia, Spain
Cite this article:   
Rafael Cortell 2008 Chin. Phys. Lett. 25 1340-1342
Download: PDF(108KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Momentum and energy laminar boundary layers of an incompressible fluid with thermal radiation about a moving plate in a quiescent ambient fluid are investigated numerically. Also, it has been underlined that the analysis of the
roles of both velocity and temperature gradient at infinity is of key relevance for our results.
Keywords: 47.15.Cb      47.11.-j     
Received: 03 September 2007      Published: 31 March 2008
PACS:  47.15.Cb (Laminar boundary layers)  
  47.11.-j (Computational methods in fluid dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I4/01340
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Rafael Cortell
[1] Howarth L 1938 Proc. Roy. Soc. London A 164547
[2] Abussita A M M 1994 Appl. Math. Comput. 64 73
[3] Asaithambi A 1998 Appl. Math. Comput. 92 135
[4] Wang L 2004 Appl. Math. Comput. 157 1
[5] Kuo B L 2004 Appl. Math. Comput. 150 303
[6] Zheng L C, Zhang X X and He J C 2003 Chin. Phys.Lett. 20 83
[7] Zheng L C, Zhang X X and He J C 2003 Chin. Phys.Lett. 20 858
[8] Chen X H, Zheng L C and Zhang X X 2007 Chin. Phys.Lett. 24 1989
[9] Zheng L C, Chen X H and He J C 2004 Chin. Phys.Lett. 21 1983
[10] Elbashbeshy E M A and Dimian M F 2002 Appl. Math.Comput. 132 445
[11] Hossain M A, Alim M A and Rees D 1999 Int. J. HeatMass Transfer 42 181
[12] Hossain M A, Khanafer K and Vafai K 2001 Int. J.Thermal Sci. 40 115
[13] Raptis A, Perdikis C and Takhar H S 2004 Appl. Math.Comput. 153 645
[14] Cortell R 1995 Developments in ComputationalEngineering Mechanics ed Topping B H V (New York: Civil-ComputationPress) p 121
[15] Cortell R 2005 Appl. Math. Comput. 170 706
[16] Taigbenu A E and Onyejekwe O O 1999 Appl. Math.Modelling 23 241
[17] Fang T, Guo F and Lee F 2006 Appl. Math. Lett. 19 613
[18] Chang C W, Chang J R and Liu C S 2006 J.Hydrodynamics 18 103
[19] Ishak A, Nazar R and Pop I 2007 Int. J. Heat MassTransfer 50 4743
[20] Ishak A, Nazar R and Pop I 2007 Chin. Phys. Lett. 24 2274
[21] Cortell R 2006 Int. J. Non-Linear Mech. 41 78
[22] Cortell R 2007 Comput. Math. Appl. 53 305
[23] Cortell R 2007 Int. J. Heat Mass Transfer 503152
[24] Cortell R 2005 Fluid Dyn. Research 37 231
[25] Cortell R 2006 Il Nuovo Cimento 121 951
[26] Cortell R 1994 Int. J. Non-Linear Mech. 29155
[27] Sakiadis B C 1961 Am. Inst. Chem. Engin. J. 7 26.
[28] Elbarbary E M E and Elgazery N S 2004 Int. Comm.Heat Mass Transfer 31 409
[29] Rosseland S 1936 Theoretical Astrophysics. (NewYork: Oxford University Press)
[30] Siegel R and Howell J R 1992 Thermal Radiation: HeatTransfer 3rd edn (Washington, DC: Hemisphere)
[31] Sparrow E M and Cess R D 1978 Radiation HeatTransfer (Washington, DC: Hemisphere)
[32] Cortell R 1993 Comput. \& Struct. 49 897
[33] Andersson H I and Aarseth J B 2007 Int. J. Engin.Sci. 45 544
[34] Pantokratoras A 2007 Int. J. Heat Mass Transfer 51 104
Related articles from Frontiers Journals
[1] WEI Yi-Kun, QIAN Yue-Hong. Reducing Spurious Velocities at the Interfaces of Two-Phase Flows for Lattice Boltzmann Simulations[J]. Chin. Phys. Lett., 2012, 29(6): 1340-1342
[2] Swati Mukhopadhyay*. Heat Transfer Analysis of the Unsteady Flow of a Maxwell Fluid over a Stretching Surface in the Presence of a Heat Source/Sink[J]. Chin. Phys. Lett., 2012, 29(5): 1340-1342
[3] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 1340-1342
[4] Chandaneswar Midya*. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface[J]. Chin. Phys. Lett., 2012, 29(1): 1340-1342
[5] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . Slip Effects on an Unsteady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Stretching Sheet[J]. Chin. Phys. Lett., 2011, 28(9): 1340-1342
[6] Krishnendu Bhattacharyya** . Dual Solutions in Unsteady Stagnation-Point Flow over a Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(8): 1340-1342
[7] Krishnendu Bhattacharyya**, G. C. Layek . MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing[J]. Chin. Phys. Lett., 2011, 28(8): 1340-1342
[8] Krishnendu Bhattacharyya . Boundary Layer Flow and Heat Transfer over an Exponentially Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(7): 1340-1342
[9] TANG Zhan-Qi, JIANG Nan, ** . TR PIV Experimental Investigation on Bypass Transition Induced by a Cylinder Wake[J]. Chin. Phys. Lett., 2011, 28(5): 1340-1342
[10] SI Xin-Hui**, ZHENG Lian-Cun, ZHANG Xin-Xin, SI Xin-Yi, YANG Jian-Hong . Flow of a Viscoelastic Fluid through a Porous Channel with Expanding or Contracting Walls[J]. Chin. Phys. Lett., 2011, 28(4): 1340-1342
[11] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate[J]. Chin. Phys. Lett., 2011, 28(2): 1340-1342
[12] ZHANG Hui, FAN Bao-Chun**, CHEN Zhi-Hua . In-depth Study on Cylinder Wake Controlled by Lorentz Force[J]. Chin. Phys. Lett., 2011, 28(12): 1340-1342
[13] Swati Mukhopadhyay . Heat Transfer in a Moving Fluid over a Moving Non-Isothermal Flat Surface[J]. Chin. Phys. Lett., 2011, 28(12): 1340-1342
[14] FANG Tie-Gang*, ZHANG Ji, ZHONG Yong-Fang, TAO Hua . Unsteady Viscous Flow over an Expanding Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(12): 1340-1342
[15] Tiegang FANG**, Shanshan YAO . Viscous Swirling Flow over a Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(11): 1340-1342
Viewed
Full text


Abstract