Chin. Phys. Lett.  2008, Vol. 25 Issue (4): 1343-1346    DOI:
Original Articles |
Essence of Inviscid Shear Instability: a Point View of Vortex Dynamics
SUN Liang
School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
Cite this article:   
SUN Liang 2008 Chin. Phys. Lett. 25 1343-1346
Download: PDF(110KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The essence of shear instability is reviewed both mathematically and physically, which extends the instability theory of a sheet vortex from the viewpoint of vortex dynamics. For this, the Kelvin--Arnol'd theorem is retrieved in linear context, i.e., the stable flow minimizes the kinetic energy
associated with vorticity. Then the mechanism of shear instability is explored by combining the mechanisms of both Kelvin--Helmholtz instability (K-H instability) and resonance of waves. The waves, which have the same phase speed with the concentrated vortex, have interactions with the vortex to trigger the instability. The physical explanation of shear instability is also sketched by extending Batchelor's theory. These results should lead to a more comprehensive understanding on shear instabilities.
Keywords: 47.15.Fe      47.20.-k      47.32.-y     
Received: 18 December 2007      Published: 31 March 2008
PACS:  47.15.Fe (Stability of laminar flows)  
  47.20.-k (Flow instabilities)  
  47.32.-y (Vortex dynamics; rotating fluids)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I4/01343
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Liang
[1]Drazin P G and Reid W H 1981 Hydrodynamic Stability(Cambridge: Cambridge University Press)
[2] Huerre P and Rossi M 1998 Hydrodynamics and NonlinearInstabilities ed Godr`eche C and Manneville P (Cambridge: CambridgeUniversity Press)
[3] Criminale W O, Jackson T L and Joslin R D 2003 Theoryand Computation of Hydrodynamic Stability (Cambridge: CambridgeUniversity Press)
[4] Kelvin L 1875 Collected Works I$\!$V 115
[5] Arnold V I 1965 J. Applied Math. Mech. {\bf 29 1002
[6] Arnold V I 1969 Amer. Math. Soc. Transl. {\bf 19267
[7] Arnold V I and Khesin B A 1998 Topological Methods inHydrodynamics (New York: Springer)
[8] Saffman P G 1992 Vortex Dynamics (Cambridge:Cambridge University Press)
[9] Vladimirov V A and Ilin K I 1999 The Arnoldfest edBierstone E, Khesin B, Khovanskii A and Marsden J E (New York:American Mathematical Society) p 471
[10] Rayleigh L 1880 Proc. London Math. Soc. {\bf 11 57
[11] Fj\o rtoft R 1950 Geofysiske Publikasjoner {\bf 171
[12] Sun L 2007 Eur. J. Phys. {\bf 28 889
[13] Batchelor G K 1967 An Introduction to Fluid Dynamics(Cambridge: Cambridge University Press)
[14] Craik A D D 1971 J. Fluid Mech. {\bf 50 393
[15] Butler K M and Farrell B F 1992 Phys. Fluids A {\bf4 1637
[16] Baines P and Mitsudera H 1994 J. Fluid Mech. {\bf276 327
[17] Staquet C and Sommeria J 2002 Ann. Rev. Fluid Mech.{\bf 34 559
[18] Tollmien W 1936 Tech. Rep. NACA TM-792
[19] Friedrichs K O 1942 Fluid Dynamics (Rhode Island:Brown University Press)
[20] Drazin P G and Howard L 1966 Adv. Appl. Mech. {\bf9 1
[21] Lin C C 1955 The Theory of Hydrodynamic Stability(London: Cambridge University Press)
[22] Sun L 2006 arXiv:physics/0601112
[23] Ponta F L and Aref H 2004 Phys. Rev. Lett. {\bf 93084501
[24] Sun L 2005 arXiv:physics/0512208
[25] Vallis G K 2006 Atmospheric and Oceanic FluidDynamics (Cambridge: Cambridge University Press)doi:10.2277-/0521849691
Related articles from Frontiers Journals
[1] TANG Zhan-Qi, JIANG Nan, ** . TR PIV Experimental Investigation on Bypass Transition Induced by a Cylinder Wake[J]. Chin. Phys. Lett., 2011, 28(5): 1343-1346
[2] LIU Jian-Xin, LUO Ji-Sheng. Numerical Investigation on Inviscid Instability of Streaky Structures in Incompressible Boundary Layer Flow[J]. Chin. Phys. Lett., 2010, 27(8): 1343-1346
[3] XU Tao. Topological Structure of Vortices in Multicomponent Bose-Einstein Condensates[J]. Chin. Phys. Lett., 2009, 26(9): 1343-1346
[4] XIA Yong, LU De-Tang, LIU Yang, XU You-Sheng. Lattice Boltzmann Simulation of the Cross Flow Over a Cantilevered and Longitudinally Vibrating Circular Cylinder[J]. Chin. Phys. Lett., 2009, 26(3): 1343-1346
[5] SONG Jun, SONG Jin-Bao. Effects of Buoyancy on Langmuir Circulation[J]. Chin. Phys. Lett., 2008, 25(5): 1343-1346
[6] HAN Jian, JIANG Nan .. Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer[J]. Chin. Phys. Lett., 2008, 25(5): 1343-1346
[7] REN Ling, CHEN Jian-Guo, ZHU Ke-Qin. Dual Role of Wall Slip on Linear Stability of Plane Poiseuille Flow[J]. Chin. Phys. Lett., 2008, 25(2): 1343-1346
[8] ZHANG Tian-Tian, JIA Li, WANG Zhi-Cheng. Analytic Solution for Steady Slip Flow between Parallel Plates with Micro-Scale Spacing[J]. Chin. Phys. Lett., 2008, 25(1): 1343-1346
[9] FU De-Xun, MA Yan-Wen, LI Xin-Liang. Direct Numerical Simulation of Three-Dimensional Richtmyer--Meshkov Instability[J]. Chin. Phys. Lett., 2008, 25(1): 1343-1346
[10] TENG Hong-Hui, JIANG Zong-Lin. Analytical Interaction of the Acoustic Wave and Turbulent Flame[J]. Chin. Phys. Lett., 2007, 24(2): 1343-1346
[11] QIAN Su-Ping, TIAN Li-Xin. Modification of the Clarkson--Kruskal Direct Method for a Coupled System[J]. Chin. Phys. Lett., 2007, 24(10): 1343-1346
[12] CHEN Jian-Guo, REN Ling, FU Song. Linear Stability of Taylor-Couette Flows with Axial Heat Buoyancy[J]. Chin. Phys. Lett., 2006, 23(8): 1343-1346
[13] TANG Xiao-Yan, HUANG Fei, , LOU Sen-Yue,. Variable Coefficient KdV Equation and the Analytical Diagnoses of a Dipole Blocking Life Cycle[J]. Chin. Phys. Lett., 2006, 23(4): 1343-1346
[14] MA Dong-Jun, SUN De-Jun, YIN Xie-Yuan. A Global Stability Analysis of the Wake behind a Rotating Circular Cylinder[J]. Chin. Phys. Lett., 2005, 22(8): 1343-1346
[15] ZHU Ke-Qin, REN Ling, LIU Yi. Linear Stability of Flows in a Squeeze Film[J]. Chin. Phys. Lett., 2005, 22(6): 1343-1346
Viewed
Full text


Abstract