Chin. Phys. Lett.  2007, Vol. 24 Issue (4): 941-943    DOI:
Original Articles |
Multiwavelength All-Optical Clock Recovery of Non-Return-to-Zero Data
ZHANG Feng;CHEN Ming;QIN Xi;LV Bo;LU Dan;CHEN Yong;CAO Ji-Hong;JIAN Shui-Sheng
Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044
Cite this article:   
ZHANG Feng, CHEN Ming, QIN Xi et al  2007 Chin. Phys. Lett. 24 941-943
Download: PDF(677KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A novel scheme of all-optical clock recovery from mutiwavelength non-return-to-zero (NRZ) data stream is proposed and demonstrated. The chirp induced by a chirped fibre Bragg grating and a semiconductor optical amplifier is used to enhance the clock. The clock is recovered after injecting the enhanced signal into the scheme based on the stimulated Brillouin scattering. The experiment is carried out and the dual-wavelength clock is recovered. This novel scheme can realize clock recovery of multiwavelength NRZ signal in the total wavelength range of 3.3nm. This clock recovery technology is transparent to the data bit rate and modulation format, also without pattern dependence.
Keywords: 42.55.Px      42.65.Es      42.79.Dj     
Received: 28 December 2006      Published: 26 March 2007
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.65.Es (Stimulated Brillouin and Rayleigh scattering)  
  42.79.Dj (Gratings)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I4/0941
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Feng
CHEN Ming
QIN Xi
LV Bo
LU Dan
CHEN Yong
CAO Ji-Hong
JIAN Shui-Sheng
[1] Mao W, Al-Mumin M, Wang X H and Li G F 2001 IEEE Photon.Technol. Lett. 13 239
[2] Yin L N, Yan Y M, Zhou Y F, Wu J and Lin J T 2006 MicrowaveOpt. Technol. Lett. 48 516
[3] Jinno M and Matsumoto T 1992 IEEE J. Quantum Electron. 28 895
[4] Slovak J, Bornholdt C, Kreissl J, Bauer S, Biletzke M, Schlak M andSartorius B 2006 IEEE Photon. Technol. Lett. 18 844
[5] Lerber T, Tuominen J, Ludvigsen H, Honkanen S and Kueppers F 2006 IEEE Photon. Technol. Lett. 18 1395
[6] Butler D L, Wey J S, Chbat M W, Burdge G L and Goldhar J 1995 Opt. Lett. 20 560
[7] Johnson C, Demarest K, Allen C, Hui R, Peddanarappagari K V and ZhuB 1999 IEEE Photon. Technol. Lett. 11 895
[8] Liu Y, Chen Y, Tan Z W, Cao J H, Zheng K, Ning T G, Chen T, Dong XW and Jian S S 2005 Chin. Phys. Lett. 22 1944
[9] Zhang F, Chen Y and Jian S S 2007 Acta Opt. Sin. 27(accepted) (in Chinese)
[10] Zhou X, Shalaby H H M, Chao L, Cheng T H and Ye P D 2000 IEEEJ. Lightwave Technol. 18 1453
Related articles from Frontiers Journals
[1] LIU Dong, FU Yong-Qi, YANG Le-Chen, ZHANG Bao-Shun, LI Hai-Jun, FU Kai, XIONG Min. Influence of Passivation Layers for Metal Grating-Based Quantum Well Infrared Photodetectors[J]. Chin. Phys. Lett., 2012, 29(6): 941-943
[2] MAO Yi-Wei, WANG Yao, CHEN Yang-Hua, XUE Zheng-Qun, LIN Qi, DUAN Yan-Min, SU Hui. Characteristic Optimization of 1.3 μm High-Speed MQW InGaAsP-AlGaInAs Lasers[J]. Chin. Phys. Lett., 2012, 29(6): 941-943
[3] SU Zhou-Ping**,JI Zhi-Cheng,ZHU Zhuo-Wei,QUE Li-Zhi,ZHU Yun. Phase Locking of Laser Diode Array by Using an Off-Axis External Talbot Cavity[J]. Chin. Phys. Lett., 2012, 29(5): 941-943
[4] HUANG Xi,QIN Cui,YU Yu,ZHANG Zheng,ZHANG Xin-Liang**. Single- and Dual-Channel DPSK Signal Amplitude Regeneration Based on a Single Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(5): 941-943
[5] WU Wen-Han,HUANG Xi,YU Yu**,ZHANG Xin-Liang. RZ-DQPSK Signal Amplitude Regeneration Using a Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(4): 941-943
[6] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 941-943
[7] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 941-943
[8] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, QIU Ji-Fang, ZHAO Ling-Juan. Ultrashort Pulse Generation at Quasi-40-GHz by Using a Two-Section Passively Mode-Locked InGaAsP-InP Tensile Strained Quantum-Well Laser[J]. Chin. Phys. Lett., 2012, 29(2): 941-943
[9] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, WANG Bao-Jun, BIAN Jing, MA Li, YU Wen-Ke, LOU Cai-Yun . Influence Factors of an All-Optical Recovered Clock from Two-Section DFB Lasers[J]. Chin. Phys. Lett., 2011, 28(9): 941-943
[10] ZHOU Kang**, XU Chen, XIE Yi-Yang, ZHAO Zhen-Bo, LIU Fa, SHEN Guang-Di . Reduction of the Far-Field Divergence Angle of an 850nm Multi-Leaf Holey Vertical Cavity Surface Emitting Laser[J]. Chin. Phys. Lett., 2011, 28(8): 941-943
[11] WANG Xiao-Long, TAO Tian-Jiong, CHENG Bing, WU Bin, XU Yun-Fei, WANG Zhao-Ying, LIN Qiang** . A Digital Phase Lock Loop for an External Cavity Diode Laser[J]. Chin. Phys. Lett., 2011, 28(8): 941-943
[12] LIU Jie**, YANG Ji-Min, WANG Wei-Wei, ZHENG Li-He, SU Liang-Bi, XU Jun . Kerr-Lens Self-Mode-Locked Laser Characteristics of Yb:Lu2SiO5 Crystal[J]. Chin. Phys. Lett., 2011, 28(7): 941-943
[13] ZHANG Jin-Chuan, , WANG Li-Jun**, LIU Wan-Feng, LIU Feng-Qi, YIN Wen, LIU Jun-Qi, LI Lu, WANG Zhan-Guo . Room-Temperature Continuous-Wave Operation of a Tunable External Cavity Quantum Cascade Laser[J]. Chin. Phys. Lett., 2011, 28(7): 941-943
[14] ZHOU Ya-Ting, **, SHI Yue-Chun, LI Si-Min, LIU Sheng-Chun, CHEN Xiang-Fei** . A Special Sampling Structure with an Arbitrary Equivalent-Phase-Shift for Semiconductor Lasers and Multiwavelength Laser Arrays[J]. Chin. Phys. Lett., 2011, 28(7): 941-943
[15] PENG Yu, **, ZHAO Yang, LI Ye, YANG Tao, CAO Jian-Ping, FANG Zhan-Jun, ZANG Er-Jun . Diode Laser Optically Injected by Resonance of a Monolithic Cavity[J]. Chin. Phys. Lett., 2011, 28(11): 941-943
Viewed
Full text


Abstract