Chin. Phys. Lett.  2007, Vol. 24 Issue (4): 1046-1049    DOI:
Original Articles |
Fano Interference versus Kondo Effect in Strongly Correlated T-Shaped Quantum Dots Embedded in an Aharonov--Bohm Ring
CHEN Bao-Ju 1,2;CHEN Xiong-Wen 1,2;SHI Zhen-Gang 1,2;ZHU Xi-Xiang 1,2;SONG Ke-Hui 1,2;WU Shao-Quan 3
1Department of Physics and Electronic Information Science, Huaihua University, Huaihua 4180082Research Institute of Information Science, Huaihua University, Huaihua 4180083Department of Physics, Sichuan Normal University, Chengdu 610068
Cite this article:   
CHEN Bao-Ju, CHEN Xiong-Wen, SHI Zhen-Gang et al  2007 Chin. Phys. Lett. 24 1046-1049
Download: PDF(319KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We theoretically investigate the properties of the ground state of the
strongly correlated T-shaped double quantum dots embedded in an
Aharonov--Bohm ring in the Kondo regime by means of the one-impurity
Anderson Hamiltonian. It is found that in this system, the persistent
current depends sensitively on the parity and size of the ring. With the
increase of interdot coupling, the persistent current is suppressed due
to the enhancing Fano interference weakening the Kondo effect. Moreover,
when the spin of quantum dot embedded in the Aharonov--Bohm ring is
screened, the persistent current peak is not affected by interdot
coupling. Thus this model may be a new candidate for detecting Kondo
screening cloud.
Keywords: 72.10.Fk      72.15.Qm      73.23.Ra     
Received: 18 September 2006      Published: 26 March 2007
PACS:  72.10.Fk (Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))  
  72.15.Qm (Scattering mechanisms and Kondo effect)  
  73.23.Ra (Persistent currents)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I4/01046
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Bao-Ju
CHEN Xiong-Wen
SHI Zhen-Gang
ZHU Xi-Xiang
SONG Ke-Hui
WU Shao-Quan
[1] Hewson A C 1993 The Kondo Problem to Heavy Fermions(Cambridge: Cambridge University Press)
[2] Ng T K and Lee P A 1998 Phys. Rev. Lett. 61 1768
[3] Ji Y, Heiblum M and Shtrikman 2002 Phys. Rev. Lett. 88076601
[4] Stefa\'nski P, Tagliaczzo A and Buka R 2004 Phys. Rev. Lett. 93 186805
[5] Zhou G H and Li Y 2005 J. Phys: Condens. Matter 176663
[6] Zhou G H, Li Y and Cheng F 2005 J. Appl. Phys. 97123521
[7] Luo H G, Wang S J and Jia C L 2002 Phys. Rev. B 66235311
[8] Xiong Y J and Xiong S J 2002 Phys. Rev. B 66 035316
[9] Ding G H and Dong B 2003 Phys. Rev. B 67 195327
[10] Wu S Q , Wang S J and Sun W L et al 2003 Phys. Lett. A 307 64
[11] Chen X W, Wu S Q and Wang P et al 2004 Chin. Phys.Lett. 21 911
[12] Chen X W, Shi Z G and Wu S Q et al 2006 Chin. Phys. Lett. 23 439
[13] Affleck I and Simon P 2001 Phys. Rev. Lett. 86 2854
[14] Cho S Y, Kang K and Kim K C et al 2001 Phys. Rev. B 64 033314
[15] Cedraschi P, Ponomarenko V V and B\"uttiker M 2000 Phys. Rev. Lett. 84 346
Related articles from Frontiers Journals
[1] HUANG Rui**,MING Shan-Wen,WANG Yong. The Kondo and Fano Effects in Triple Quantum Dots Coupled to Noncollinear Ferromagnetic Leads[J]. Chin. Phys. Lett., 2012, 29(4): 1046-1049
[2] JI Shuai-Hua, FU Ying-Shuang, ZHANG Tong, CHEN Xi, JIA Jin-Feng, XUE Qi-Kun, MA Xu-Cun. Kondo Effect in Self-Assembled Manganese Phthalocyanine Monolayer on Pb Islands[J]. Chin. Phys. Lett., 2010, 27(8): 1046-1049
[3] CHEN Jia-Feng, WU Shao-Quan, HOU Tao, ZHAO Guo-Ping. Kondo and Coulomb Interaction Effects in Spin-Polarized Transport through Double Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(4): 1046-1049
[4] XU Ning, WANG Bao-Lin, SUN Hou-Qian, DING Jian-Wen . Resonance Transmission in Graphene-Nanoribbon-Based Quantum Dot and Superlattice[J]. Chin. Phys. Lett., 2010, 27(10): 1046-1049
[5] XU Ning, DING Jian-Wen, CHEN Hong-Bo, MA Ming-Ming. Curvature and Hybridization Effects on the Persistent Current of a Carbon Nanotorus[J]. Chin. Phys. Lett., 2009, 26(7): 1046-1049
[6] BI Ai-Hua, WU Shao-Quan, HOU Tao, SUN Wei-Li. Fano--Kondo Effect in a Triple Quantum Dots Coupled to Ferromagnetic Leads[J]. Chin. Phys. Lett., 2008, 25(8): 1046-1049
[7] HOU Tao, WU Shao-Quan, BI Ai-Hua, YANG Fu-Bin, SUN Wei-Li. Spin-Polarized Transport through Parallel Double Quantum Dots Coupled to Ferromagnetic Leads[J]. Chin. Phys. Lett., 2008, 25(6): 1046-1049
[8] WANG Xin-Jun, LIU Jing-Feng, LI Shui. Low-Temperature Thermal Conductance in Superlattice Nanowire with Structural Defect[J]. Chin. Phys. Lett., 2008, 25(6): 1046-1049
[9] ZHANG Xi-Hua, XIONG Shi-Jie. Persistent Spin and Charge Currents in Open Conducting Ring Subjected to Rashba Spin--Orbit Coupling[J]. Chin. Phys. Lett., 2008, 25(5): 1046-1049
[10] LI Xiu-Ping, LA Shi-Jiang, WEN Yu-Bing, YAN Wei-Xian. Coherent Dynamics of Direct-Current-Driven Quantum-Dot-Array with Two Time-Dependent Embedded Impurities[J]. Chin. Phys. Lett., 2008, 25(4): 1046-1049
[11] YANG Fu-Bin, WU Shao-Quan, SUN Wei-Li. Spin-Polarized Transport through the T-Shaped Double Quantum Dots with Fano--Kondo Interaction[J]. Chin. Phys. Lett., 2007, 24(7): 1046-1049
[12] WU Shao-Quan, SUN Wei-Li. Fano versus Kondo Resonances in a Closed Aharonov--Bohm Interferometer Coupled to Ferromagnetic Electrodes[J]. Chin. Phys. Lett., 2007, 24(4): 1046-1049
[13] HAN Yue-Wu, LIU Yu-Liang, CAI Shao-Hong,. Fano Resonance in Landau Fermi and Luttinger Liquids[J]. Chin. Phys. Lett., 2007, 24(4): 1046-1049
[14] CHEN Xiong-Wen, SHI Zhen-Gang, CHEN Bao-Ju, SONG Ke-Hui. Kondo Resonance versus Fano Interference in Double Quantum Dots Coupled to a Two-Lead One-Ring System[J]. Chin. Phys. Lett., 2007, 24(11): 1046-1049
[15] DING Guo-Hui, YE Fei. Quantum Phase Transition and Ferromagnetic Spin Correlation in Parallel Double Quantum Dots[J]. Chin. Phys. Lett., 2007, 24(10): 1046-1049
Viewed
Full text


Abstract