Chin. Phys. Lett.  2005, Vol. 22 Issue (2): 450-453    DOI:
Original Articles |
Electrical Resistance Measurement of an Individual Carbon Nanotube
LIU Jin-Ping1;XIAO Cun-Ying2;HUANG Xin-Tang1
1College of Physical Science and Technology, Central China Normal University, Wuhan 430079 2Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
Cite this article:   
LIU Jin-Ping, XIAO Cun-Ying, HUANG Xin-Tang 2005 Chin. Phys. Lett. 22 450-453
Download: PDF(347KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Aiming at the difficulty in the electrical resistance measurement, we develop a simple statistical model for the carbon nanotubes adequately dispersed in available insulated liquid and introduce the concept of "the most probability". Based on this model, we obtain the function between macroscopic resistance R and resistance of an individual nanotube, R0, from which one can calculate the resistance of an individual nanotube by measuring the macroscopic resistance. By computational simulation, we prove the reliability of the model. Then, we analyse the feasibility of the model when applied to experiment.
Keywords: 72.80.Rj      02.50.Cw      02.70.Rw     
Published: 01 February 2005
PACS:  72.80.Rj (Fullerenes and related materials)  
  02.50.Cw (Probability theory)  
  02.70.Rw  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I2/0450
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Jin-Ping
XIAO Cun-Ying
HUANG Xin-Tang
Related articles from Frontiers Journals
[1] WANG Lin-Jun, CAO Gang, TU Tao**, LI Hai-Ou, ZHOU Cheng, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping** . Ground States and Excited States in a Tunable Graphene Quantum Dot[J]. Chin. Phys. Lett., 2011, 28(6): 450-453
[2] CHEN Zhi-Dong, ZHANG Jin-Yu, YU Zhi-Ping. Numerical Analysis of Alternating-Current Small-Signal Response in Graphene Nanoribbons[J]. Chin. Phys. Lett., 2010, 27(8): 450-453
[3] LU Hong-Yan, WANG Qiang-Hua. Electronic Raman Scattering in Graphene[J]. Chin. Phys. Lett., 2008, 25(10): 450-453
[4] LI Jing-Bo, FANG Xi-Ming. High Efficient Quantum Key Distribution by Random Using Classified Signal Coherent States[J]. Chin. Phys. Lett., 2006, 23(6): 450-453
[5] FANG Jing-Hai, LIU Li-Wei, KONG Wen-Jie, CAI Jian-Zhen, LU Li. Hopping Conductivity in a Single-Walled Carbon Nanotube Network[J]. Chin. Phys. Lett., 2006, 23(4): 450-453
[6] LI Jing-Bo, FANG Xi-Ming. Nonorthogonal Decoy-State Quantum Key Distribution[J]. Chin. Phys. Lett., 2006, 23(4): 450-453
[7] XU Xin-Ping, LIU Feng, LI Wei. Growing Small-World Networks Based on a Modified BA Model[J]. Chin. Phys. Lett., 2006, 23(3): 450-453
[8] FENG Wei, ZHOU Feng, WANG Xiao-Gong, WAN Mei-Xiang, FUJII Akihiko, YOSHINO Katsumi. Water-Soluble Multi-Walled Nanotube and its Film Characteristics[J]. Chin. Phys. Lett., 2003, 20(5): 450-453
[9] WANG Xiao-Feng, ZHOU Xu, LI Zong-Wei, CHEN Li. Bayesian Analysis of Type Ia Supernova Data[J]. Chin. Phys. Lett., 2003, 20(10): 450-453
[10] WU Yuan-Fang, LIU Lian-Shou. Source Function Determined from Hanbury-Brown/Twiss (HBT)Correlations by the Maximum Entropy Principle[J]. Chin. Phys. Lett., 2002, 19(2): 450-453
[11] CHEN Li. Dependence of X-Ray Luminosity on Temperature for Groups and Clusters with the Moving Median Statistics[J]. Chin. Phys. Lett., 2002, 19(2): 450-453
[12] YANG Hua-Tong, DONG Jin-Ming, XING Ding-Yu. Electronic Localization Length of Carbon Nanotubes with Different Chiral Symmetries[J]. Chin. Phys. Lett., 2001, 18(8): 450-453
[13] WANG Xiao-Feng, CHEN-Li, LI Zong-Wei . Bayesian Approach to the Best Estimate of the Hubble Constant [J]. Chin. Phys. Lett., 2001, 18(1): 450-453
Viewed
Full text


Abstract