Chin. Phys. Lett.  2003, Vol. 20 Issue (11): 1936-1939    DOI:
Original Articles |
Deformed Potential Energy of 263Db in a Generalized Liquid Drop Model
CHEN Bao-Qiu1,2;MA Zhong-Yu1,2,3;Zhao Yao-Lin2
1Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000 2China Institute of Atomic Energy, Beijing 102413 3Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
CHEN Bao-Qiu, MA Zhong-Yu, Zhao Yao-Lin 2003 Chin. Phys. Lett. 20 1936-1939
Download: PDF(301KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The macroscopic deformed potential energy for super-heavy nuclei 263Db, which governs the entrance and alpha decay channels, is determined within a generalized liquid drop model (GLDM). A quasi-molecular shape is assumed in the GLDM, which includes the volume-, surface-, and Coulomb-energies, the proximity effects, the mass asymmetry, and an accurate nuclear radius. The microscopic single particle energies are derived from a shell model in an axially deformed Woods-Saxon potential with the quasi-molecular shape. The shell correction is calculated by the Strutinsky method. The total deformed potential energy of a nucleus can be calculated by the macro-microscopic method as the summation of the liquid-drop energy and the Strutinsky shell correction. The theory is applied to predict the deformed potential energy of the experiment 22DNe + 241Am → 263Db*259Db + 4n, which was performed on the Heavy Ion Accelerator in Lanzhou. It is found that the neck in the quasi-molecular shape is responsible for the deep valley of the fusion barrier due to the shell corrections. In the cold fusion path, the double-hump fusion barrier is predicted by the shell correction and complete fusion events may occur.
Keywords: 25.60.Pj      25.70.Jj      27.90.+b     
Published: 01 November 2003
PACS:  25.60.Pj (Fusion reactions)  
  25.70.Jj (Fusion and fusion-fission reactions)  
  27.90.+b (A ≥ 220)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I11/01936
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Bao-Qiu
MA Zhong-Yu
Zhao Yao-Lin
Related articles from Frontiers Journals
[1] ZHAO Yue,KANG Xu-Zhong,SHEN Shui-Fa,**,YAN Yu-Peng,HE Chuang-Ye,YAN Shi-Wei. High-Spin States in Transuranium Nuclei 242,244Pu[J]. Chin. Phys. Lett., 2012, 29(5): 1936-1939
[2] ZHANG Zhi-Yuan, GAN Zai-Guo**, MA Long, HUANG Ming-Hui, HUANG Tian-Heng, WU Xiao-Lei, JIA Guo-Bin, LI Guang-Shun, YU Lin, REN Zhong-Zhou, ZHOU Shan-Gui, ZHANG Yu-Hu, ZHOU Xiao-Hong, XU Hu-Shan, ZHANG Huan-Qiao, XIAO Guo-Qing, ZHAN Wen-Long. Observation of the Superheavy Nuclide 271Ds[J]. Chin. Phys. Lett., 2012, 29(1): 1936-1939
[3] JIANG Song-Sheng**, HE Ming, WU Shao-Yong, QI Bu-Jia. Anomalously High Isotope Ratio 3He/4He and Tritium in Deuterium-Loaded Metal: Evidence for Nuclear Reaction in Metal Hydrides at Low Temperature[J]. Chin. Phys. Lett., 2012, 29(1): 1936-1939
[4] WANG Yong-Jia, ZHANG Hong-Fei, ZUO Wei, LI Jun-Qing,. Improvement of a Fission-Like Model for Nuclear α Decay[J]. Chin. Phys. Lett., 2010, 27(6): 1936-1939
[5] WANG Nan, DOU Liang, ZHAO En-Guang, Werner Scheid. Nuclear Hexadecapole Deformation Effects on the Production of Super-Heavy Elements[J]. Chin. Phys. Lett., 2010, 27(6): 1936-1939
[6] Ishwar Dutt**, Rajni Bansal . A Modified Proximity Approach in the Fusion of Heavy Ions[J]. Chin. Phys. Lett., 2010, 27(11): 1936-1939
[7] Ishwar Dutt**, Narinder K. Dhiman. Study of Fusion Dynamics Using Skyrme Energy Density Formalism with Different Surface Corrections[J]. Chin. Phys. Lett., 2010, 27(11): 1936-1939
[8] HE Chuang-Ye, CUI Xing-Zhu, ZHU Li-Hua, WU Xiao-Guang, LI Guang-Sheng, LIU Ying, WANG Zhi-Min, WEN Shu-Xian, SUN Hui-Bin, MA Rui-Gang, YANG Chun-Xiang. Shell Structures in 91Nb[J]. Chin. Phys. Lett., 2010, 27(10): 1936-1939
[9] ZHANG Gao-Long, LE Xiao-Yun, LIU Zu-Hua. Coulomb Potentials between Spherical and Deformed Nuclei[J]. Chin. Phys. Lett., 2008, 25(4): 1936-1939
[10] HUANG Ming-Hui, GAN Zai-Guo, FENG Zhao-Qing, ZHOU Xiao-Hong, LI Jun-Qing,. Neutron and Proton Diffusion in Fusion Reactions for the Synthesis of Superheavy Nuclei[J]. Chin. Phys. Lett., 2008, 25(4): 1936-1939
[11] WANG Nan, LI Jun-Qing, ZHAO En-Guang,. Shell Correction and Pairing Energies in the Dinuclear System Model[J]. Chin. Phys. Lett., 2008, 25(1): 1936-1939
[12] YUE Chong-Xing, ZHANG Nan, DING Li, ZHU Shi-Hai, WANG Li-Hong. Associated Production of Scalars and New Gauge Bosons from a Little Higgs Model at the LHC[J]. Chin. Phys. Lett., 2008, 25(1): 1936-1939
[13] CAO Ji-Guang, YANG Ding, MA Zhong-Yu, Nguyen Van Giai. Boundary Conditions of Wigner-Seitz Cell in Inner Crust of Neutron Stars with Relativistic Mean Field Approach[J]. Chin. Phys. Lett., 2008, 25(1): 1936-1939
[14] FAN Zhe-Yong, REN Zhong-Zhou, XU Chang. A Simple Systematical Law of E21+ Values for Heavy Nuclei in the NpNn Scheme and the Evolution of the Z=64 Shell Gap[J]. Chin. Phys. Lett., 2007, 24(9): 1936-1939
[15] FENG Zhao-Qing, JIN Gen-Ming, HUANG Ming-Hui, GAN Zai-Guo, WANG Nan, LI Jun-Qing,. Possible Way to Synthesize Superheavy Element Z =117[J]. Chin. Phys. Lett., 2007, 24(9): 1936-1939
Viewed
Full text


Abstract