Chin. Phys. Lett.  2022, Vol. 39 Issue (8): 087301    DOI: 10.1088/0256-307X/39/8/087301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Giant Influence of Clustering and Anti-Clustering of Disordered Surface Roughness on Electronic Tunneling
Yu Zhang1,2,4, Qingyun Zhang1, Youqi Ke1,2,3*, and Ke Xia3
1School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
2Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
3Beijing Computational Science Research Center, Beijing 100193, China
4University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article:   
Yu Zhang, Qingyun Zhang, Youqi Ke et al  2022 Chin. Phys. Lett. 39 087301
Download: PDF(3671KB)   PDF(mobile)(3674KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This work reveals the giant influence of spatial distribution of disordered surface roughness on electron tunneling, which is of immediate relevance to the magneto tunnel device and imaging technologies. We calculate the spin-dependent tunneling in Fe/vacuum/Fe junction with disordered surface roughness with the first-principles non-equilibrium dynamical cluster theory. It is found that, at high concentration of surface roughness, different spatial distributions, including the clustered, anti-clustered and completely random roughness characterized by Warren–Cowley parameters, present large deviations from each other in all spin channels. By changing from clustered to anti-clustered roughness, it is surprising that spin polarization of tunneling in parallel configuration (PC) can be drastically reversed from $-0.52$ to 0.93, while complete randomness almost eliminates the polarization. It is found that the anti-clustered roughness can dramatically quench the tunneling of minority spin in both PC and anti-PC by orders of magnitude, but significantly enhance the transmission of majority spin in PC (by as large as $40\%$) compared to the results of clustered roughness, presenting distinct influences of differently correlated surface roughness. The spatial correlation of disordered surface roughness can significantly modify the surface resonance of Fe minority spin.
Received: 25 February 2022      Editors' Suggestion Published: 27 July 2022
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
  73.40.-c (Electronic transport in interface structures)  
  73.43.Jn (Tunneling)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/8/087301       OR      https://cpl.iphy.ac.cn/Y2022/V39/I8/087301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu Zhang
Qingyun Zhang
Youqi Ke
and Ke Xia
[1] Koenraad P M and Flatté M E 2011 Nat. Mater. 10 91
[2] Wei S H, Ferreira L G, Bernard J E and Zunger A 1990 Phys. Rev. B 42 9622
[3] Allnatt A R and Lidiard A B 1993 Imperfections in Solids (Cambridge: Cambridge University Press) p 50
[4] Zunger A, Wei S H, Ferreira L G and Bernard J E 1990 Phys. Rev. Lett. 65 353
[5] Wunnicke O, Papanikolaou N, Zeller R, Dederichs P H, Drchal V and Kudrnovský J 2002 Phys. Rev. B 65 064425
[6] Xu P X, Karpan V M, Xia K, Zwierzycki M, Marushchenko I and Kelly P J 2006 Phys. Rev. B 73 180402(R)
[7] Ke Y, Xia K and Guo H 2008 Phys. Rev. Lett. 100 166805
[8] Binnig G, Rohrer H, Gerber C and Weibel E 1982 Appl. Phys. Lett. 40 178
[9] Binnig G, Rohrer H, Gerber C and Weibel E 1982 Phys. Rev. Lett. 49 57
[10] Binnig G, Frank K H, Fuchs H, Garcia N, Reihl B, Rohrer H, Salvan F and Williams A R 1985 Phys. Rev. Lett. 55 991
[11] Wiesendanger R, Güntherodt H J, Güntherodt G, Gambino R J and Ruf R 1990 Phys. Rev. Lett. 65 247
[12] Bode M, Getzlaff M and Wiesendanger R 1998 Phys. Rev. Lett. 81 4256
[13]Chen C J 1993 Introduction to Scanning Tunneling Microscopy (Oxford: Oxford University Press)
[14] Mizes H A, Park S I and Harrison W A 1987 Phys. Rev. B 36 4491
[15] Bischoff M M J, Konvicka C, Quinn A J, Schmid M, Redinger J, Podloucky R, Varga P and van Kempen H 2001 Phys. Rev. Lett. 86 2396
[16] Takahashi Y, Miyamachi T, Ienaga K, Kawamura N, Ernst A and Komori F 2016 Phys. Rev. Lett. 116 056802
[17] Tsymbal E Y, Mryasov O N and LeClair P R 2003 J. Phys.: Condens. Matter 15 R109
[18] Zhang X G and Butler W H 2003 J. Phys.: Condens. Matter 15 R1603
[19] Ke Y, Xia K and Guo H 2010 Phys. Rev. Lett. 105 236801
[20] Butler W H, Zhang X G, Schulthess T C and MacLaren J M 2001 Phys. Rev. B 63 092402
[21] Stroscio J A, Pierce D T, Davies A, Celotta R J and Weinert M 1995 Phys. Rev. Lett. 75 2960
[22] Alvarado S F 1995 Phys. Rev. Lett. 75 513
[23] Okuno S N, Kishi T and Tanaka K 2002 Phys. Rev. Lett. 88 066803
[24] Ding H F, Wulfhekel W, Henk J, Bruno P and Kirschner J 2003 Phys. Rev. Lett. 90 116603
[25] Bischoff M M J, Yamada T K, Fang C M, de Groot R A and van Kempen H 2003 Phys. Rev. B 68 045422
[26] Chantis A N, Belashchenko K D, Tsymbal E Y and van Schilfgaarde M 2007 Phys. Rev. Lett. 98 046601
[27] Soven P 1967 Phys. Rev. 156 809
[28] Taylor D W 1967 Phys. Rev. 156 1017
[29] Zhang Y, Zhai J, Chen Z, Zhang Q and Ke Y 2021 Phys. Rev. B 104 115412
[30] Andersen O K, Jepsen O and Krier G 1995 Exact Muffin-Tin Orbital Theory, in Lectures on Methods of Electronic Structure Calculations (Singerpore: World Scientific) pp 63–124
[31] Andersen O K, Arcangeli C, Tank R W, Saha-Dasgupta T, Krier G, Jepsen O and Dasgupta I 1997 MRS Online Proc. Libr. 491 3
[32] Vitos L, Skriver H L, Johansson B and Kollár J 2000 Comput. Mater. Sci. 18 24
[33] Vitos L, Abrikosov I A and Johansson B 2001 Phys. Rev. Lett. 87 156401
[34] Vitos L 2007 Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications (London: Springer)
[35] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[36] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[37] Zhang Q, Yan J, Zhang Y and Ke Y 2019 Phys. Rev. B 100 075134
[38] Chen Z, Zhang Q, Zhang Y, Wang L, Sang M and Ke Y 2020 Phys. Rev. B 102 035405
[39] Hettler M H, Tahvildar-Zadeh A N, Jarrell M, Pruschke T and Krishnamurthy H R 1998 Phys. Rev. B 58 R7475
[40] Hettler M H, Mukherjee M, Jarrell M and Krishnamurthy H R 2000 Phys. Rev. B 61 12739
[41] Jarrell M and Krishnamurthy H R 2001 Phys. Rev. B 63 125102
[42] Maier T A, Jarrell M, Pruschke T and Hettler M 2005 Rev. Mod. Phys. 77 1027
[43] Cowley J M 1950 J. Appl. Phys. 21 24
[44] Wolverton C, Ozoliņš V and Zunger A 1998 Phys. Rev. B 57 4332
[45] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[46] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[47] Yan J, Wang S, Xia K and Ke Y 2018 Phys. Rev. B 97 014404
Related articles from Frontiers Journals
[1] Ruiling Gao, Chao Liu, Le Fang, Bixia Yao, Wei Wu, Qiling Xiao, Shunbo Hu, Yu Liu, Heng Gao, Shixun Cao, Guangsheng Song, Xiangjian Meng, Xiaoshuang Chen, and Wei Ren. Two-Dimensional Electron Gas in MoSi$_{2}$N$_{4}$/VSi$_{2}$N$_{4}$ Heterojunction by First Principles Calculation[J]. Chin. Phys. Lett., 2022, 39(12): 087301
[2] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 087301
[3] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 087301
[4] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 087301
[5] Fan Gao and Yongqing Li. Influence of Device Geometry on Transport Properties of Topological Insulator Microflakes[J]. Chin. Phys. Lett., 2021, 38(11): 087301
[6] Kun Luo, Wei Chen, Li Sheng, and D. Y. Xing. Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States[J]. Chin. Phys. Lett., 2021, 38(11): 087301
[7] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 087301
[8] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 087301
[9] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 087301
[10] Wei-Xiong Wu, Yang Feng, Yun-He Bai, Yu-Ying Jiang, Zong-Wei Gao, Yuan-Zhao Li, Jian-Li Luan, Heng-An Zhou, Wan-Jun Jiang, Xiao Feng, Jin-Song Zhang, Hao Zhang, Ke He, Xu-Cun Ma, Qi-Kun Xue, and Ya-Yu Wang. Gate Tunable Supercurrent in Josephson Junctions Based on Bi$_{2}$Te$_{3}$ Topological Insulator Thin Films[J]. Chin. Phys. Lett., 2021, 38(3): 087301
[11] Zi-Lin Ruan , Zhen-Liang Hao , Hui Zhang , Shi-Jie Sun , Yong Zhang , Wei Xiong , Xing-Yue Wang , Jian-Chen Lu, and Jin-Ming Cai . Topological-Defect-Induced Superstructures on Graphite Surface[J]. Chin. Phys. Lett., 2021, 38(2): 087301
[12] Chunyan Liao, Yahui Jin, Wei Zhang, Ziming Zhu, and Mingxing Chen. Fe$_{2}$Ga$_{2}$S$_{5}$ as a 2D Antiferromagnetic Semiconductor[J]. Chin. Phys. Lett., 2020, 37(10): 087301
[13] Ze-Rui Wang, Chen-Xiao Zhao, Guan-Yong Wang, Jin Qin, Bing Xia, Bo Yang, Dan-dan Guan, Shi-Yong Wang, Hao Zheng, Yao-Yi Li, Can-hua Liu, and Jin-Feng Jia. Controllable Modulation to Quantum Well States on $\beta$-Sn Islands[J]. Chin. Phys. Lett., 2020, 37(9): 087301
[14] Meihua Liu , Zhangwei Huang , Kuanchang Chang , Xinnan Lin , Lei Li , and Yufeng Jin. Performance Enhancement of AlGaN/GaN MIS-HEMTs Realized via Supercritical Nitridation Technology[J]. Chin. Phys. Lett., 2020, 37(9): 087301
[15] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 087301
Viewed
Full text


Abstract